

International Conference on Mechanical, Electrical and Medical Intelligent System

KL-01 13:00-13:25 Nov. 29, 2017 (Wed)

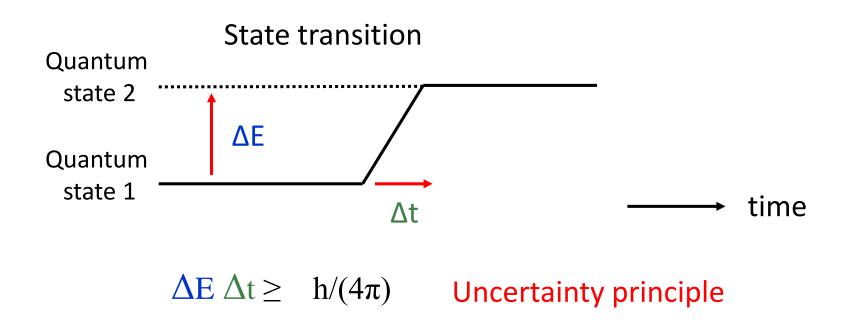
Consideration on Fundamental Performance Limitation of Analog Electronic Circuits Based on Uncertainty Principle

H. Kobayashi I. Shimizu N. Tsukiji M. Arai K. Kubo H. Aoki

Gunma University
Oyama National College of Technology
Teikyo Heisei University

JAPAN

My First Research


Computer with Superconductor (Josephson Device)

Under supervision of Prof. Ko Hara (原 宏) at University of Tokyo Physicist

Undergraduate (Bachelor) course, 4th year

[1] K. Hara, H. Kobayashi, S. Takagi, F. Shiota, "Simulation of a Multi-Josephson Switching Device", Japanese J. of Applied Physics (1980).

Research Motivation of This Paper

My strong impression:

Our Statement

Uncertainty relationships are everywhere in electronic circuits

Ultimately, some would converge to Heisenberg uncertainty principle in quantum physics.

Contents

- Research Objective
- Uncertainty Principle and Relationship
- Invariant Quantity
- Electronic Circuit Performance Analogy to Uncertainty Relationship and Invariant
- Quantitative Discussion
- Conclusion

Contents

- Research Objective
- Uncertainty Principle and Relationship
- Invariant Quantity
- Electronic Circuit Performance Analogy to Uncertainty Relationship and Invariant
- Quantitative Discussion
- Conclusion

Research Objective

Our Objective

In analog electronic circuits

- Clarify tradeoff among their performance indices
- Provide their fundamental limitation

Our Approach

Based on

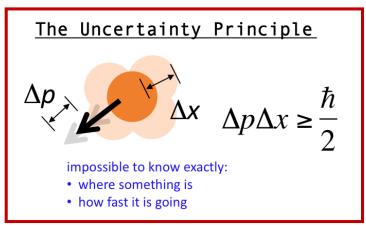
- Uncertainty principle in quantum mechanics
- Uncertainty relationship in signal processing

Contents

- Research Objective
- Uncertainty Principle and Relationship
- Invariant Quantity
- Electronic Circuit Performance Analogy to Uncertainty Relationship and Invariant
- Quantitative Discussion
- Conclusion

Uncertainty Principle in Quantum Mechanics

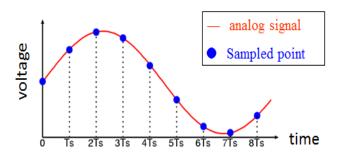
 $\Delta t \Delta E \ge h/(4\pi)$


t: time, E: energy

$$\Delta x \Delta p \ge h/(4\pi)$$

x: position, p: momentum.

W. K. Heisenberg



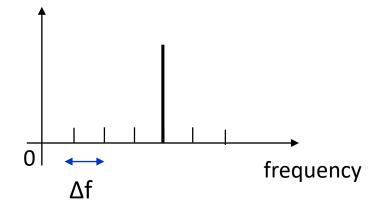
These cannot be proved \implies *principle*.

Uncertainty Relationship in Signal Processing (1)

Discrete Fourier Transform (DFT)

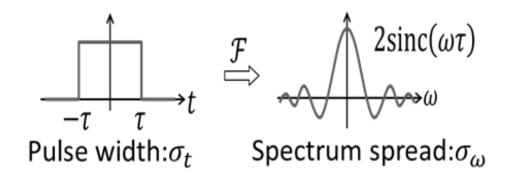
Sampling frequency: fs

Sampling period: Ts (= 1/fs)


Number of DFT points :N

$$\Delta f = fs/N = 1/(Ts N)$$

Time & frequency resolution


$$\Delta f Ts = 1/N$$

This can be proved mathematically

Uncertainty Relationship in Signal Processing (2)

 Uncertainty Relationship between Time & Frequency of Continuous Waveform

$$\sigma_{\tau}\sigma_{\omega} \geq \frac{1}{2}$$

This can be proved mathematically Relationship

Contents

- Research Objective
- Uncertainty Principle and Relationship
- Invariant Quantity
- Electronic Circuit Performance Analogy to Uncertainty Relationship and Invariant
- Quantitative Discussion
- Conclusion

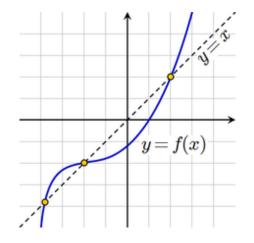
Importance of Invariant (1)

Conservation Law in Physics:

- Energy conservation law
- Mass conservation law
- Momentum conservation law
- Charge conservation law

$$p1 = m1 \ v1, \quad p2 = m2 \ v2$$

$$p1'=m1 \text{ vm}, p2'=m2 \text{ vm}$$


$$p1+p2=p1'+p2'$$

Importance of Invariant (2)

Invariant quantity clarify phenomena & characteristics

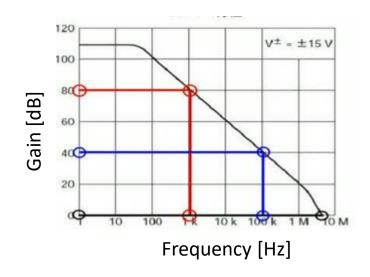
Fixed-Point in Mathematics:

$$f(x) = x$$

Utility for Voyage

Polaris

Contents

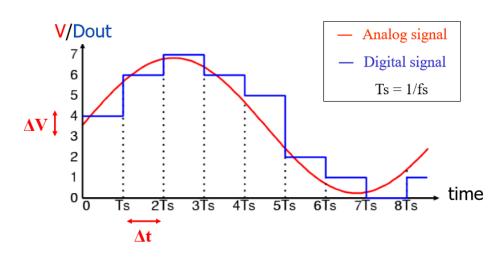

- Research Objective
- Uncertainty Principle and Relationship
- Invariant Quantity
- <u>Electronic Circuit Performance Analogy</u>
 <u>to Uncertainty Relationship and Invariant</u>
- Quantitative Discussion
- Conclusion

Gain, Signal Band and Power

For a given amplifier

Gain • bandwidth = constant

Gain \rightarrow large, bandwidth \rightarrow narrow



Amplifier Performance

Technology constant

→ Converge to uncertainty principle conjecture

ADC Sampling Speed, Resolution and Power

Sampling period: Δt

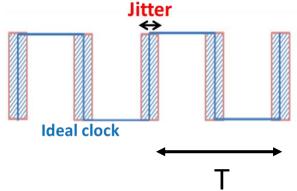
Resolution: Vfull $\Delta V = 2^n$

Power: P

FOM =
$$\Delta t \cdot \Delta V \cdot P / V_{\text{full}}$$

= $\Delta t \cdot P / 2^{n}$

FOM =


Voltage Resolution • Power
Sampling Speed

Technology constant

 $FOM \rightarrow Smaller, ADC \rightarrow Better$

Converge to uncertainty principle conjecture

Clock Jitter, Power

Clock jitter: Δt

Clock generator energy: E

power: P

Design tradeoff

$$\Delta t \cdot E \ge K1$$
 $(\Delta t / T) P \ge K1$

Power \rightarrow larger, Jitter \rightarrow smaller

Noise, Capacitor

Analogy

Momentum conservation law

Charge conservation law

Uncertainty principle

$$\Delta x \Delta p \ge K$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$
 $\Delta V f \Delta Q \ge K$

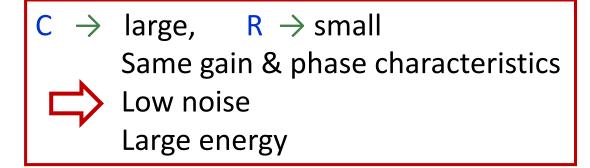
$$\Leftrightarrow$$

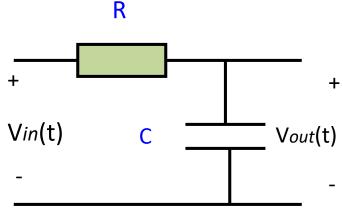
$$\Leftrightarrow$$
 C ΔV^2 f $\geq K$

Noise bandwidth: f

Noise power
$$\Delta V^2 = kT/C$$

$$\Delta V^2 = kT/C$$


$$C \rightarrow large$$
, Noise $\rightarrow small$


Noise, Capacitor (2)

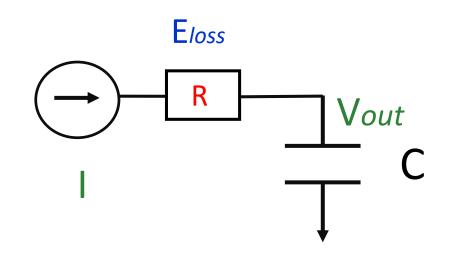
- For a given T=RC
 the same gain & phase characteristics
 for different (R₁, C₁), (R₂, C₂), ...
 with R₁ C₁ = R₂ C₂ = ... = T
- For a given Vout

$$Ec = (1/2) C V_{out}^2$$

$$V_{noise}^2 = kT/C$$

Transfer function

$$G(s) = 1/(1 + sRC)$$


Capacitor Charge & Loss

$$E_{loss} = (R \cdot I) \cdot I \cdot T$$
$$= R \cdot C \cdot V \cdot I$$

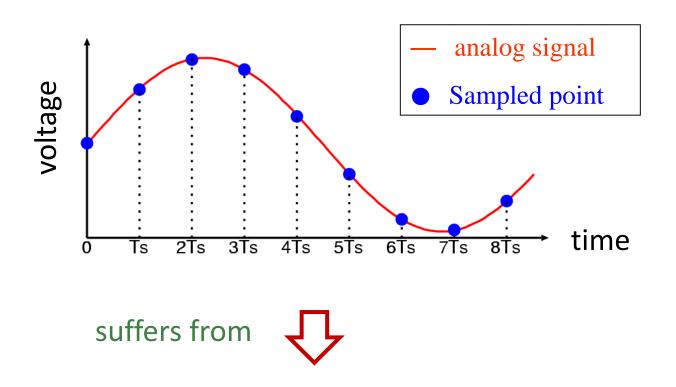
$$Vout = I \cdot T / C$$

I: Charge Current

T: Charge Duration

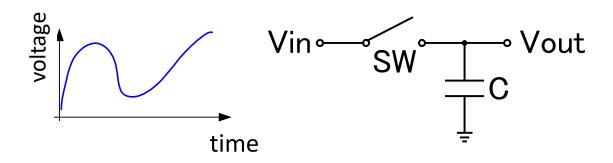
Uncertainty relationship

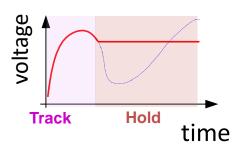
For given R, C, V_{out} $I \rightarrow small$, $T \rightarrow long \implies E_{loss} \rightarrow small$

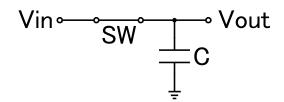

Waveform Sampling Circuit

- Research Objective
- Uncertainty Principle and Relationship

Example of
Uncertainty Relationship
In Signal Processing

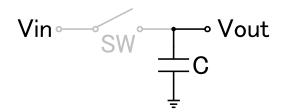

[2] M. Arai, H. Kobayashi, et. al., "Finite Aperture Time Effects in Sampling Circuit," IEEE 11th International Conference on ASIC, Chengdu (Nov. 2015).

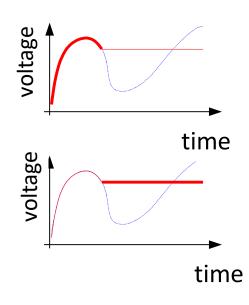

Waveform Sampling



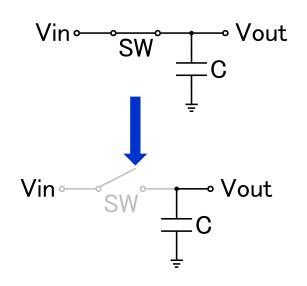
- Finite aperture time (non-zero turn-off time)
- Aperture jitter

Sampling Circuit




- SW: ON
 - •Vout(t) = Vin(t)

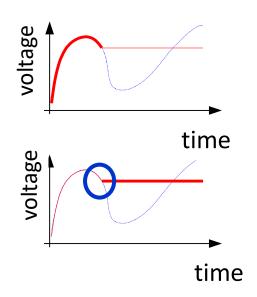
Track mode



- •SW: OFF
 - •Vout(t) = $Vin(t_{OFF})$

Hold mode

Finite Aperture Time



- SW: ON
 - •Vout(t) = Vin(t)

Track mode

- •SW: OFF
 - •Vout(t) = $Vin(t_{OFF})$

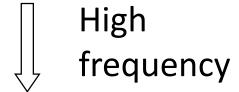
Hold mode

Finite transition time from track to hold modes

Analogy with Camera Shutter Speed

Camera: Finite Shutter Speed

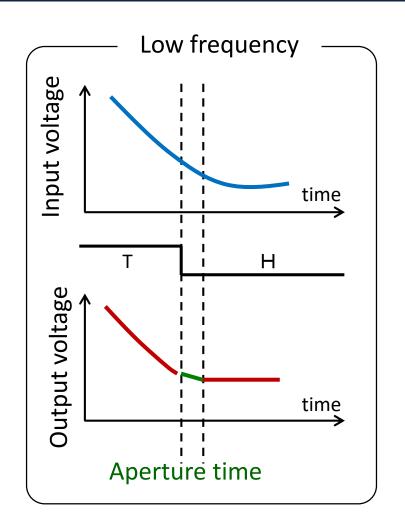
Moving Object

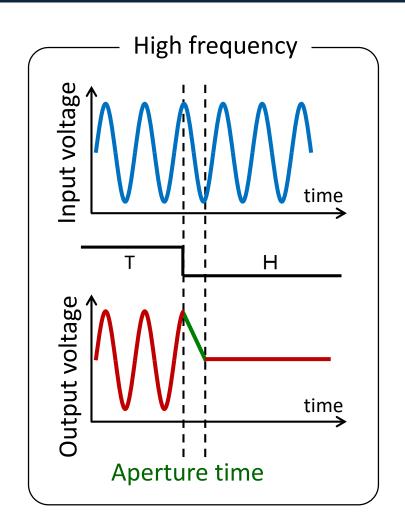


Blurred

Sampling Circuit:

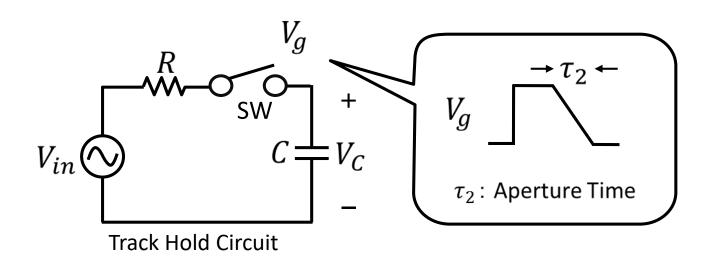
Finite Aperture Time


Input signal



Acquired signal

Low pass filtered


Signal Frequency and Aperture Time

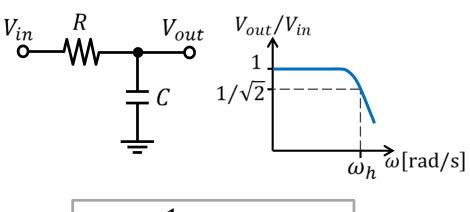
Higher frequency signal ⇒ More affected by finite aperture time

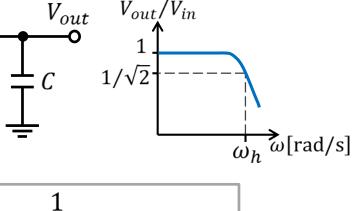
Derived Transfer Function

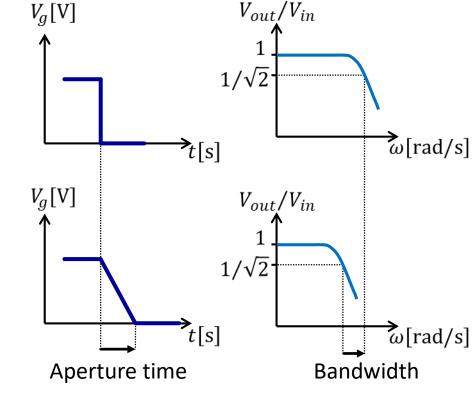
$$\frac{V_C}{V_{in}} = \frac{sinc(\omega \tau_2)}{sinc(\omega \tau_2) + j\omega \tau_1}$$

 $\tau_1 = R C$

Transfer function in case of finite aperture time


[3] A. Abidi, M. Arrai, K. Niitsu, H. Kobayashi, "Finite Aperture Time Effects in Sampling Circuits," 24th IEICE Workshop on Circuits and Systems, Awaji Island, Japan (Aug. 2011)


28/42


Trade-off of Time Constant and Bandwidth

■ RC time constant and bandwidth

■ Aperture time and bandwidth

Time Band: ω_h **Short** Wide Long **Narrow**

Analog Electronic Circuits

Performance tradeoffs are everywhere in circuits

$$\Delta a \Delta b \geq K$$

- In some cases, these can be proved. Uncertainty relationship
- In other cases, these can NOT be proved.

For a given technology

$$\Delta$$
a Δ b = K

 $\Delta a \Delta b = K$ K: Technology constant

Technology
$$\rightarrow$$
 advance \longrightarrow K \rightarrow smaller

Conjecture: this converges to uncertainty principle

Analog Circuit and Quantum Mechanics

Myth

- Real world signals → analog
- Computer world signals → digital.

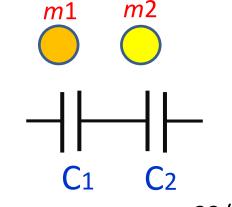
Truth

- quantum mechanics →
 signals in nature → digital (discrete).
- Current → average of electrons' moves
- Electronic noises → their variation.

Conjecture

- Analog electronic circuit performance
 - → Limited by quantum mechanics

Analogy


In Physics, analogy is just a coincidence, NOT inevitable.

Analogy

Difference

Any connection of m1 & m2 > m1, m2

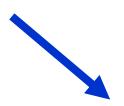
Series connection of C1 & C2 < C1, C2

Bridge Through Plank Constant

"Let there be light!" "Mehr Licht!"

Old testament

by J. W. von Goethe


Uncertainty Relationship Analogy to Principle

$$\Delta\omega$$
 $\Delta\tau \geq 1/2$

 $(h/(2\pi))$ Δω Δτ $\geq h/(4\pi)$

Energy in the light: $E = (h/(2\pi)) \omega$

$$\Delta E \Delta \tau \geq h/(4\pi)$$

Uncertainty Principle

Measurement and Simulation

Measurement: Active, Passive

Active: Stimulus — Device

Response Measured

Device state

Disturbed.

Passive: No stimulus

Device state Not disturbed.

Uncertainty principle

all measurements disturb device state.

Circuit simulation No disturbance.

Contents

- Research Objective
- Uncertainty Principle and Relationship
- Invariant Quantity
- Electronic Circuit Performance Analogy to Uncertainty Relationship and Invariant
- Quantitative Discussion
- Conclusion

Now, Close to Ultimate Limitation

$$h/(4\pi) = 5.2 \times 10^{(-35)}$$

In case

C=0.01fF, V=0.1V,
$$\Delta t= 1ps$$

$$\Delta E = (1/2) C V^2$$

$$\Delta E \Delta t = 5.0 \times 10^{(-32)}$$

With subtle change of conditions, both become comparable.

Contents

- Research Objective
- Uncertainty Principle and Relationship
- Invariant Quantity
- Electronic Circuit Performance Analogy to Uncertainty Relationship and Invariant
- Quantitative Discussion
- Conclusion

Conclusion

Our strong belief:

Analog electronic circuit

Its design tradeoff as well as FOM

Analogy to uncertainty principle/relationship.

Uncertainty principle and relationship

Its ultimate performance limitation

Final Statement

Current status of circuit design and analysis area

Only individual techniques have been developed.

We need to establish a unified theory for circuit design and analysis area.

Thank you for listening

