November 28, 2017

SAR TDC Architecture with Self-Calibration Employing Trigger Circuit

Y. Ozawa, T. Ida, R. Jiang, S. Sakurai, S. Takigami, N. Tsukiji, R. Shiota, H. Kobayashi Gunma University, Socionext Inc.,

Research Target

High-speed I/O interface signal timing testing

Application

Large circuit × Large amounts

Multi channels

High test cost

Small circuit × Large amounts

Innovation

Trigger Circuit One-shot timing measurement & Short testing time for low frequency repetitive timing

Self Calibration Linear TDC Nonlinear TDC Indato 1

Time Input

Time Input

Outline

Research Objective TDC Application to LSI Testing Technology SAR TDC Architecture & Operation SAR TDC with Self Calibration -Relative variation -Absolute variation SAR TDC Employing Trigger Circuit Summary

Outline

Research Objective

• TDC Application to LSI Testing Technology

SAR TDC Architecture & Operation

• SAR TDC with Self Calibration

-Relative variation

-Absolute variation

• SAR TDC Employing Trigger Circuit

Summary

Research Objective

 To develop time-to-digital circuit with small size, low power, fine time resolution
 & one-shot timing signal measurement capability

Approach(1)

Fine time resolution & high linearity timing measurement with full digital self-calibration method

Outline

- Research Objective TDC Application to LSI Testing Technology • SAR TDC Architecture & Operation • SAR TDC with Self Calibration SAR TDC Employing Trigger Circuit
- Conclusion

ATE System & TDC

 "Timing" is very important in ATE systems
 Many high-performance TDCs are used there.

Such as for clock timing, jitter measurements

[1] K. Yamamoto, at. el. (Advantest Corp.),
 "Multi Strobe Circuit for 2.133 GHz Memory Test System,"
 IEEE International Test Conference, Paper 6.1 (2006).

Analog/Mixed-Signal BIST, BOST

TDC can be used for BIST, BOST

BIST, DFT

Chip design time become longer Chip become larger Difficult to assure its reliability

Long time-to-market Costly Should be simple

BOST

Design / implementation after tape out attractive

Outline

Research Objective • TDC Application to LSI Testing Technology SAR TDC Architecture & Operation **SAR TDC with Self Calibration** SAR TDC Employing Trigger Circuit

SAR TDC Architecture

D-FFs can be greatly reduced by using MUX

Circuit operation loop can be made with successive approximation

SAR : Successive Approximation Register

SAR-ADC VS. SAR-TDC

SAR ADC :ComparatorDAC

SAR-ADC

SAR TDC :D-FFDelay line

Outline

Research Objective • TDC Application to LSI Testing Technology • SAR TDC Architecture & Operation SAR TDC with Self Calibration -Relative variation -Absolute variation SAR TDC Employing Trigger Circuit

Random Variation among Delay Cells

Delay **7** variation

Relative variation TDC nonlinearity

Absolute (average value) variation
TDC input range & time resolution

SAR TDC with Self-Calibration

Addition of calibration circuit, interconnection

Measurement with Histogram

Random dots (Monte Carlo method)

Relative

variation

Normal Operation Mode

Calibration Mode

CLK1, CLK2 are NOT correlated.

Measurement of Delay Values

Histogram method (Monte Carlo method)

Delay values can be estimated

Relative

variation

Digital Output

Time Input

Digital Correction of TDC Nonlinearity

• Correction with inverse transfer function

Digital Output

Digital Error Correction

Dout(0)=1 Dout(1)=3 Dout(2)=5 Dout(3)=8

Calibration

Dout(0)=0.3 Dout(1)=2.8 Dout(2)=4.5 Dout(3)=7.3

Corrected based on delay variation estimation

Relative

variation

Simulation Verification

Relative variation

Delay variation

TDC characteristics before calibration

TDC characteristics after calibration

Fine Time Resolution with 2-Step Method

Absolute

variation

Absolute Block Diagram of SAR + Vernier TDC variation CLK1 \mathcal{T} Ţ $\tilde{\mathcal{T}}$ $\tilde{\mathcal{T}}$ $\overline{\mathcal{T}}$ $\tilde{\mathcal{T}}$ $\hat{\mathcal{T}}$ MUX select 3 D Q SAR Logic CLK2 3 Dout D'out Fine time resolution **TDC** circuit

About 9.0%

 $X \tau_3 = \tau_1 - \tau_2$

Estimation error of $\tau_3 (= \tau_1 - \tau_2)$

Absolute

Outline

• Research Objective

- TDC Application to LSI Testing Technology
- SAR TDC Architecture & Operation
- SAR TDC with Self Calibration.
 - -Relative variation
 - -Absolute variation
- SAR TDC Employing Trigger Circuit

Summary

Trigger Circuit

Output starts to oscillate at rising timing edge of input

Problem of SAR-TDC & Remedy

One-shot Timing Measurement Using Trigger Circuit

Suggestion

Input START, STOP signal

Oscillate with initial phase at input timing

It can hold the time difference using two trigger circuits

Low Frequency Clock Measurement

Short testing time for low frequency repetitive timing

Trigger Circuit Waves

Input

600u

600u

700u

700u

800

800u

Combination of Trigger Circuit & SAR TDC

Proposed Circuit

One-Shot Timing Measurement Simulation

Outline

• Research Objective

- TDC Application to LSI Testing Technology
- SAR TDC Architecture & Operation
- SAR TDC with Self Calibration
 - -Relative variation
 - -Absolute variation
- SAR TDC Employing Trigger Circuit

Summary

Summary

- SAR TDC with self-calibration has been introduced
- Trigger circuit can generate repetitive signals
- One shot timing can be measured with SAR TDC

✓ Small circuit
✓ Full digital
✓ High linearity
✓ High resolution

Timing testing at low cost

Thank you for your attention

Q & A (1)

Q1 : You said the circuit scale of SAR TDC can be realized very small. Does it prove something? Are there any data? And how small is SAR TDC compared with Flash TDC?

A1: We confirmed it with FPGA, but I don't have any data. But I have appendix slides. As you can see, In the flash TDC, at 10 bits, D-FFs are 1023. But, In the SAR TDC, at 10 bits, DFFs- are 23. And multiplexer can be realized small, simple switches. So circuit scare can be small.

Q & A (2)

Q2 : Interesting topic & study. How to configure delay elements? How to calibrate delay elements values?

A2 : Delay elements values cannot be calibrated directly. But we can "digitally" calibrate by estimating original values of that TDC up to the decimal point. And this is appendix slides(P53,54). If the value of t1 is very large, there will be many occurrences of 100 at the stop A signal and 011 at the stop D signal.

Q & A (3)

Q3 : How to input reset signal to proposed circuit's D-FF in calibration mode?

A3 : Sorry, I need to check. I'll send e-mail after.

Appendix

Flash TDC vs. SAR TDC

FPGA Implementation of 2 step SAR TDC

XILINX ISE

Frequency of CLK1 & CLK2: 33MHz Time delay of buffers: T1 = 3.788ns, T2 = 3.314nsMinimum time resolution: T1-T2 = 1/8T1 = 0.474ns $\triangle T$ to be measured: 4.3T1 = 16.286ns

Simulation results : {Dout1, Dout2}=4.250t1=16.099ns Error=0.050t1=0.189ns

Operation of Histogram Method

Two-stage CMOS Trigger Circuit

Track & Hold