International Conference on Mechanical, Electricaland Medical Intelligent System

Nov. 29, 2017 (Wed)

Self-Adjustable Notch Frequency in Noise Spectrum of Pulse Coding DC-DC Converter for Communication Devices

<u>Yifei Sun</u>, Yi Xiong, Nobukazu Tsukiji, Yasunori Kobori and Haruo Kobayashi Gunma University Kobayashi Laboratory t172d004@gunma-u.ac.jp

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic Self-Adjusting the Notch Frequency
 - Relationship with the Clock and the Notch
 - Simulation Circuit and the Major Waveform
 - Simulated Noise Spectrum of PWM Signal
- Conclusion

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic Self-Adjusting the Notch Frequency
 - Relationship with the Clock and the Notch
 - Simulation Circuit and the Major Waveform
 - Simulated Noise Spectrum of PWM Signal
- Conclusion

Research Background

EMI:Electro-Magnetic Interference

Research Objective

Usually we reduce clock noise by spread spectrum with shaking clock phase at random by analog noise

Noise of clock frequency is spread to all frequencies around clock & its harmonics

Some electronic devices like radio receivers would not like to be affected at special frequency noise

Research Objective

Reduction of EMI^[1]generated from clock
 Noise removal at specific frequency
 Automatic generation notch frequency

[1]EMI:Electro-Magnetic Interference

Research Objective

Proposed method

Spread spectrum method using pulse coding

Design circuit in order to generate notch frequency automatically

Switching power circuit

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic Self-Adjusting the Notch Frequency
 - Relationship with the Clock and the Notch
 - Simulation Circuit and the Major Waveform
 - Simulated Noise Spectrum of PWM Signal
- Conclusion

Spread Spectrum

Analog modulation of periodic clock

 \Rightarrow Reduction of electro-magnetic noise

concentrating on fundamental frequency

Switching Power PFM : Pulse Frequency Modulation PPM : Pulse Phase Modulation

Spread Spectrum for EMI Reduction

Spread spectrum for EMI Reduction

Spectrum

©Simulation conditions Input : 12V Output : 6V Clock frequency : 200kHz

Without EMI reduction➤ Noise is concentratedin basic and harmonic frequencies

With EMI reduction

Peak level of clock frequency is reduced a lot

Noise is concentrated by diffusion

Noise increases depending on frequency

Fast Fourier Transformation (FFT) of PWM signal

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic Self-Adjusting the Notch Frequency
 - Relationship with the Clock and the Notch
 - Simulation Circuit and the Major Waveform
 - Simulated Noise Spectrum of PWM Signal
- Conclusion

Diffuse Noise to Specific Frequency

Pulse Width Modulation in Switching Converter

Input High (1)SEL: High (2)MUX select V_H (3)Generate pulse with long width in comparator

 $\bigstar D_H > D_o > D_L$

 $D_o = V_o/V_{in}$

Input Low (1)SEL: Low (2)MUX select V_L (3)Generate pulse with short width in comparator

200kHertz/div

1.4MHz

Simulation Result with PWC & EMI Reduction

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic Self-Adjusting the Notch Frequency
 - Relationship with the Clock and the Notch
 - Simulation Circuit and the Major Waveform
 - Simulated Noise Spectrum of PWM Signal
- Conclusion

Application of Automatic Self-Adjusting the Notch Frequency

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic Self-Adjusting Notch Frequency
 - Relationship with Clock and Notch
 - Simulation Circuit and Major Waveform
 - Simulated Noise Spectrum of PWM Signal
- Conclusion

Relationship with Clock and Notch

 f_{ck} : 500kHz 0.71MHz 1.4MHz 0. 9V Spectrum(PWM) / V 200kHertz/div Frequency/MHertz

> It is good for notch frequency Fn to appear at the middle between clock frequency Fck and its twice frequency 2Fck

 $Nf_{ck} < f_{in} < (N+1)f_{ck}$ Optimal $f_{\rm in} = (N + 0.5)f_{\rm ck}$

When N=1

Optimal

Relationship with Clock and Notch

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic Self-Adjusting Notch Frequency
 - Relationship with the Clock and the Notch
 - Simulation Circuit and Major Waveforms
 - Simulated Noise Spectrum of PWM Signal
- Conclusion

Generation of PLL synchronized signals

$$f_{ck} = (\frac{2}{3})f_{in}$$

$$W_{L} = T_{o} - T_{p}$$

$$W_{H} = T_{o} + T_{p}$$

$$T_{n} = W_{H} - W_{L} = 2 \times T_{p}$$

$$T_{on} = D_{o} \times T_{ck} = \frac{V_{o}}{V_{in}} \times T_{ck}$$

Waveforms of PLL circuit

Simulation Circuit and Waveforms of P_H , P_L Generation

Block diagram of P_H , P_L generation

Theoretical formula

 $W_H = T_o + T_p = 1.67\mu s$ $W_L = T_o - T_p = 0.33\mu s$

Coding pulses in PWM signal

Experimental formula

 $W_H = 1.64\mu s$ $W_L = 0.36\mu s$

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic Self-Adjusting Notch Frequency
 - Relationship with the Clock and the Notch
 - Simulation Circuit and Major Waveforms
 - Simulated Noise Spectrum of PWM Signal
- Conclusion

Assume to suppress influence on AM radio \Rightarrow A notch was generated around 750kHz

Output Voltage Ripple with $\Delta I_o = \pm 0.5 A^{25/31}$

 \bigcirc Condition

Current variation $I_o: 1 \text{ A/}0.5\text{A}$ $V_{in}=10\text{V}$ $V_o=5\text{V}$

^O Output stability

Ripple: $2mV_{pp}$ Overshoot or undershoot: $\pm 28mV$

Simulated EMI Spread Spectrum of PWM Signal

 \bigcirc Condition

Buck DC-DC converter V_{in} : 10V V_{out} : 5V L: 200 μ H C: 470 μ F I_{out} : 0.25A f_{in} : 750kHz

$$f_{\rm in} = (N + 0.5)f_{\rm ck}$$
 When N=1

26/31

$$f_{in} = 1.5 f_{ck} = f_{notch} = 750 kHz$$

 $f_{\rm ck} < f_{in} < 2 f_{\rm ck}$

Simulated EMI Spread Spectrum of PWM Signal

 \bigcirc Condition

 $f_{\rm in} = (N + 0.5)f_{\rm ck}$ When N=2

$$f_{in} = 2.5 f_{ck} = f_{notch} = 1.25 MHz$$

27/31

Buck DC-DC converter

 V_{in} : 10V V_{out} : 5V L: 200 μ H C: 470 μ F I_{out} : 0.25A f_{in} : 1.25MHz

Frequency(MHz)

 $2f_{\rm ck} < f_{in} < 3f_{\rm ck}$

Transient Response with F_{in} Change^{28/3}

Response speed when tuning or switching communication channels

28/31

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic Self-Adjusting the Notch Frequency
 - Relationship with the Clock and the Notch
 - Simulation Circuit and the Major Waveform
 - Simulated Noise Spectrum of PWM Signal

Conclusion

- Realize pulse coding method in switching converter
- Analyze spectrum spreading with notch characteristics
- Automatic self-adjusting the notch frequency

Create notch characteristics occurred around f_{in}

Using $f_{in} = (N + 0.5)f_{ck}$, discussion on generation of notch in N=1,2 situation

Assumed to suppress influence on AM radio ⇒A notch was generated around receive frequency band

Thank you for Listening

Q and A

1. Can you realize multiple notch?

Answer: According to spectrum in our realization, it can produce multiple notch. Because fin between Nfck to (N+1)fck, so notch was happened in these space.

2. Could you change your notch frequency linear?

Answer: I have not consider this question yet, notch frequency has band and I think it is possible.

Appendix PLL Circuit

Appendix EMI Circuit

