
Study on Digital Multiplier Architecture

Using Square Law and Divide-Conquer Method

Yifei Sun, Shu Sasaki, Dan Yao,

Nobukazu Tsukiji and Haruo Kobayashi

Gunma University

Division of Electronics and Informatics

t172d004@gunma-u.ac.jp

International Conference on

Mechanical, Electrical and Medical Intelligent System

Nov. 29, 2017 (Wed)

2/32

ＯＵＴＬＩＮＥ

Research Background
Multiplication Algorithm using Square Law
Divide & Conquer Method
RTL Design and Simulation
Conclusion

3/32

ＯＵＴＬＩＮＥ

Research Background
Multiplication Algorithm using Square Law
Divide & Conquer Method
RTL Design and Simulation
Conclusion

4/32

Research Background

Digital arithmetic devices
・ Adder ・ Subtractor
・ Multiplier ・ Divider

DSPs, μ Processors use several digital multipliers on a chip.

Small scale
Low power
High speed

Requirements

● Digital multiplier hardware implementation algorithm
has been a research topic for 50 years.

● Decrease of the multiplier scale is still a research topic .

5/32

How Digital Multiplier Works

2 5 multiplicand
x 3 9 multiplicator

4 5
1 8

1 5
+ 6

Partial products

0 1 1 0 0 1 : 2510 multiplicand
x 1 0 0 1 1 1 : 3910 multiplicator

0 1 1 0 0 1
0 1 1 0 0 1

+

Decimal Binary

Calculation of the sum of partial products increases

9 7 5

0 1 1 0 0 1

0 0 0 0 0 0
0 0 0 0 0 0

0 1 1 0 0 1

Partial products

AND gate

0 0 1 1 1 1 0 0 1 1 1 1 : 97510

product

product

6/32

Purpose of Study

Composition of array digital multiplier

Ex: In 6bit ×6bit situation
6 × 6 = 64 full adders are needed

Multiplier (Using square array of full adders)
・Circuit size

・Power Big
・Computation time

Reduce

circuit size ・ power ・ computation time

The multiplier can be implementation in two dimensions by adder

7/32

ＯＵＴＬＩＮＥ

Research Background
Multiplication Algorithm using Square Law
Divide & Conquer Method
RTL Design and Simulation
Conclusion

8/32

Investigated Multiplier Algorithm①

Based on square law

𝑨𝑩 =
𝟏

𝟒
[𝑨 + 𝑩 𝟐 − 𝑨 − 𝑩 𝟐]

Squaring 2 times
Addition once
Subtraction twice
1

4
operation can be realized

with 2-bit left shift
or just interconnection change

Realization circuit

𝑨 + 𝑩

General Multiplier Algorithm

𝑨𝑩 = 𝑨 + 𝑨 +⋯+ 𝑨

Multiplier A×B
Number of additions : B times

①

𝑨 − 𝑩

9/32

Investigated Multiplier Algorithm②

Based on square law

𝑨𝑩 =
𝟏

𝟐
[𝑨 + 𝑩 𝟐 − (𝑨𝟐 + 𝑩𝟐)]

Squaring 3 times
Addition twice
Subtraction once
1

2
operation can be realized

with 1-bit left shift
or just interconnection change

Realization circuit

𝑨 + 𝑩 𝑨 + 𝑩 𝟐

Right shift

②

10/32

What is Look Up Table (LUT)

LUTX F(X)
address data

Address Memory

LUT Memory (ROM ,RAM)

Data

1

42

1

3 9

4

10000

9

1

100 10000

Efficient

No calculation

Using LUT Memory reference processing

LUT processing⇒handled large number of bits ⇒ Large circuit size

Disadvantage

𝐴 𝐴2

11/32

Number of Bits Handled by LUT

Number of input bits is reduced by 1/2 LUT size is reduced by 1/32

8 bit situation4 bit situation

12/32

Do Not use LUT to Implement Square Law

We have found that direct logic circuit Implementation of squaring can be simple.

Use LUT to realized squaring calculation if lager number of bits was handled, memory size must be increased

13/32

Direct Squaring Calculation Logic Circuit

Right shift

direct squaring
calculation logic circuit

direct squaring
calculation logic circuit

direct squaring
calculation logic circuit

Right shift

Input 5 bit
Output 10 bit

Input 4 bit
Output 8 bit LUT part was replaced with squaring calculation circuit.

𝑨𝑩 =
𝟏

𝟐
[𝑨 + 𝑩 𝟐 − (𝑨𝟐 + 𝑩𝟐)] ②

14/32

Direct Squaring Calculation Logic Circuit

𝑨𝑩 =
𝟏

𝟒
[𝑨 + 𝑩 𝟐 − 𝑨 − 𝑩 𝟐] ①

direct squaring
calculation
logic circuit

direct squaring
calculation
logic circuit

Using LUT to realize square

Using direct squaring calculation logic circuit

15/32

Truth Table and Logic Expression

Input Output O3の出力が1 の入力は
0011、0101、1011、1101

なので
O3 = ഥI3ഥI2I1I0
O3 = ഥI3I2ഥI1I0
O3 = I3ഥI2I1I0
O3 = I3I2ഥI1I0

O3 In the situation of output
equal to 1 , the input are
0011 , 0101 , 1011 , 1101

𝑂3 = 𝐼2⊕ 𝐼1 𝐼0

Calculate logic expression O0~O7

EXOR

simplification
Write in a theoretical way

𝑂0 = 𝐼0
𝑂1 = 0

𝑂2 = 𝐼1 ഥ𝐼0
𝑂3 = 𝐼2⊕ 𝐼1 𝐼0

𝑂4 = ഥ𝐼3𝐼2 ഥ𝐼1 + 𝐼0 + 𝐼3 ഥ𝐼2𝐼0 + 𝐼3𝐼2 ഥ𝐼1 ഥ𝐼0
𝑂5 = 𝐼3⊕ 𝐼2 𝐼1 + 𝐼3𝐼2𝐼0

𝑂6 = 𝐼3 ഥ𝐼2 + 𝐼3𝐼2𝐼1
𝑂7 = 𝐼3𝐼2

16/32

Usage of Absolute Value for Squaring Calculation

Consider to handle negative numbers for the multiplier Convert negative number
to its absolute value

unsign sign binary

0 0 000

1 1 001

2 2 010

3 3 011

4 -4 100

5 -3 101

6 -2 110

7 -1 111

A or B are 3 bit situation A+B or A-B are 4 bit situation

Two’s complementunsign sign binary unsign sign binary

0 0 0000 8 -8 1000

1 1 0001 9 -7 1001

2 2 0010 10 -6 1010

3 3 0011 11 -5 1011

4 4 0100 12 -4 1100

5 5 0101 13 -3 1101

6 6 0110 14 -2 1110

7 7 0111 15 -1 1111

𝑨𝑩 =
𝟏

𝟒
[𝑨 + 𝑩 𝟐 − 𝑨 − 𝑩 𝟐] ①

𝐶 or D
𝐶 ≥ 0 direct squaring calculation logic circuit

𝐶 ≤ −1 reversal C in every bit plus 1 obtain 𝐶
than realizes direct squaring calculation logic circuit

𝐴 + 𝐵 = 𝐶
𝐴 − 𝐵 = 𝐷

−8 ≤ 𝐶 ≤ 6
−7 ≤ 𝐷 ≤ 7

17/32

Circuit Realization of Absolute Value for Squaring Calculation

This structure reduces the hardware whether it were implemented with LUTs or dedicated logic

18/32

ＯＵＴＬＩＮＥ

Research Background
Multiplication Algorithm using Square Law
Divide & Conquer Method
RTL Design and Simulation
Conclusion

19/32

Improvement Plan of Implementation Circuit

Come up with divide & conquer method

Cut LUT size

𝑨𝑩 =
𝟏

𝟐
[𝑨 + 𝑩 𝟐 − (𝑨𝟐 + 𝑩𝟐)]

A , B , A+B divide into upper bits and lower bits for calculation scale reduction

In 8 bit case : divide into upper 4 bit
lower 4 bit

LUT size becoming smaller

②

20/32

Divide & Conquer Method Analysis

In 8 bit case （𝐴 = 11001001 ∶ 20110）

8bit x 8bit divide 4bit [𝐴𝐻], [𝐴𝐿]
Calculated by each [𝐴𝐻], [𝐴𝐿]

１

１

０

０

１

０

０

１

１

１
０

０

１

０

０

１

𝐴

𝐴𝐻

𝐴𝐿

𝐴 = 11001001

Divided input, output values up and down

𝐴 = 11001001

𝐴𝐻 = 1100 ∶ 1210

𝐴𝐿 = 1001 ∶ 910

𝐴𝐻
2 = 10010000：14410
𝐴𝐿
2 = 1010001：8110

𝐴𝐻𝐴𝐿 = 1101100：10810

Conquer

21/32

Divide & Conquer Method Analysis

𝑨𝟐 = 𝑨𝑯
𝟐 𝟖𝒃𝒊𝒕 𝒍𝒆𝒇𝒕 𝒔𝒉𝒊𝒇𝒕 + 𝟐𝑨𝑯𝑨𝑳 𝟒𝒃𝒊𝒕 𝒍𝒆𝒇𝒕 𝒔𝒉𝒊𝒇𝒕 + 𝑨𝑳

𝟐

𝟐𝑨𝑯𝑨𝑳 = [𝑨𝑯 + 𝑨𝑳
𝟐 − 𝑨𝑯

𝟐 − 𝑨𝑳
𝟐]

𝑨𝟐 = 𝑨𝑯
𝟐 𝟖𝒃𝒊𝒕 𝒍𝒆𝒇𝒕 𝒔𝒉𝒊𝒇𝒕 + 𝑨𝑯 + 𝑨𝑳

𝟐 − 𝑨𝑯
𝟐 − 𝑨𝑳

𝟐 𝟒𝒃𝒊𝒕 𝒍𝒆𝒇𝒕 𝒔𝒉𝒊𝒇𝒕 + 𝑨𝑳
𝟐

First method

Second method

First method Second method
Realization circuit Realization circuit

22/32

Divide & Conquer Method Analysis

𝑨𝟐 = 𝑨𝑯
𝟐 𝟖𝒃𝒊𝒕 𝒍𝒆𝒇𝒕 𝒔𝒉𝒊𝒇𝒕 + 𝑨𝑯𝑨𝑳 𝟓𝒃𝒊𝒕 𝒍𝒆𝒇𝒕 𝒔𝒉𝒊𝒇𝒕 + 𝑨𝑳

𝟐

𝐴𝐻
2 = 10010000=(144)10

𝐴𝐻𝐴𝐿 = 1101100=(108)10

𝐴𝐿
2 = 1010001=(81)10

𝐴𝐻
2 8𝑏𝑖𝑡 𝑙𝑒𝑓𝑡 𝑠ℎ𝑖𝑓𝑡 = 1001000000000000=(36864)10

𝐴𝐻𝐴𝐿(5𝑏𝑖𝑡 𝑙𝑒𝑓𝑡 𝑠ℎ𝑖𝑓𝑡) = 110110000000=(3456)10

𝐴𝐿
2 = 1010001=(81)10

𝐴2 = 1001110111010001 ∶ 4040110

（𝐴2 = 201 × 201 = 40401）

𝑨 = 𝟏𝟏𝟎𝟎𝟏𝟎𝟎𝟏 = (𝟐𝟎𝟏)𝟏𝟎

First method using
Divide & Conquer 𝑨𝟐 = 36864 + 3456 + 81=40401

The value obtained by the Divide & Conquer method and the direct calculated value of square of A are the same

23/32

Divide & Conquer Method Circuit

Left shift

Left shift

𝐴𝐻

𝐴

𝐴𝐿

𝑁

2
bit

𝑁

2
bit

𝐴2

Using divide & conquer with X times , LUT size will decrease 2𝑋times

𝑨𝟐 = 𝑨𝑯
𝟐 𝑵𝒃𝒊𝒕 𝒍𝒆𝒇𝒕 𝒔𝒉𝒊𝒇𝒕 + 𝑨𝑯𝑨𝑳 (

𝑵

𝟐
+ 𝟏)𝒃𝒊𝒕 𝒍𝒆𝒇𝒕 𝒔𝒉𝒊𝒇𝒕 + 𝑨𝑳

𝟐

24/32

Divide & Conquer Method Circuit (8 bit case)

Left shift

Left shift

By dividing ,
number of LUT bits smaller

Left shift

Left shift

Left shift

Left shift

Right shift

𝐴

𝐵

4bit

4bit

4bit

4bit

4bit

4bit

𝐴 + B 2

𝐴2

𝐵2

𝐴𝐵

𝑨𝑩 =
𝟏

𝟐
[𝑨 + 𝑩 𝟐 − (𝑨𝟐 + 𝑩𝟐)]

Need LUT for 16 bit

Need LUT for 8 bit

②

25/32

ＯＵＴＬＩＮＥ

2017/12/3

Research Background
Multiplication Algorithm using Square Law
Divide & Conquer Method
RTL Design and Simulation
Conclusion

RTL: Register Transfer Level

26/32

G = A ×B

Input values A, B are changed every 100 ns and 200 ns.
A, B: input
G : output.

1.RTL Simulation using Second Divide & Conquer Method

8bit ×8bit

𝑨𝑩 =
𝟏

𝟐
[𝑨 + 𝑩 𝟐 − (𝑨𝟐 + 𝑩𝟐)] ②

27/32

2.Layout of Direct Squaring Calculation Logic Circuit

AND gate

OR gate

EXOR gate

NOT gate

Inout Output

Inout Output

Inout Output

Inout Output

This Circuit creates individual logic expressions by the number of bits of input

28/32

2.RTL Simulation using Direct Method

Using direct squaring calculation logic circuit was validated.

Input 4 bit× 4bit circuit

4bit × 4bit

Input values A, B are changed every 10 ns and 160 ns.
A, B: input
Z : output.

29/32

AB=A ×B

Input values A, B are changed every 10 ns and 70 ns.
A B: input
AB: output

3.RTL Simulation using Absolute Value

3bit × 3bit

30/32

ＯＵＴＬＩＮＥ

2017/12/3

Research Background
Digital Multiplier Algorithm
Multiplication Algorithm using Square Law
RTL Design and Simulation
Conclusion

31/32

Conclusion

Discussed multiplication algorithms based on square law

Proposed divide & conquer method to reduce LUT size
in RTL level validation by simulation

Considered reduction of multiplication using squaring calculation logic
in RTL level validation by simulation

reduce computation & circuit size

create dedicated circuit to calculate square simple

Consider to handle negative numbers for the multiplier in RTL level
validation by simulation

32/32

Thanks for your listening

33/32

Q and A

1. You have investigated the multiplication algorithm, or multiplier algorithm. Can you extend this algorithm to divide or
division algorithm?
Answer: I have not consider use Divide & Conquer method to using division algorithm yet. Using Divide & Conquer

method may be also can reduce the LUT size in division algorithm. I will consider it in the future.

2. You have improve the speed of the circuit square calculation, could you tell me some limitation of your method?
Answer: For a large number of N, the LUT size is large and its speed may be slow. For a small number of N, its size is

reduced significantly and also its access speed may be much faster.

