Linearity Improvement Algorithms of Multi-bit ΔΣ DA Converter –DWA, Self-Calibration and Their Combination

Jun-ya Kojima, Nene Kushita, Masahiro Murakami, Haruo Kobayashi

Gunma University, Japan

Kobayashi Lab

Research Objective

2/29

Objective

 Linearity improvement of Multi-bit ΔΣ DAC for analog signal generation

Approach

Digital signal techniques using DWA & self-calibration

- Research Background
- DWA* Algorithm (* Data-Weighted Averaging)
- Self-Calibration Algorithm
- Simulation Configuration & Results
- New finding for HP $\Delta\Sigma$ DAC
- Conclusion

<u>Research Background</u>

- DWA* Algorithm (* Data-Weighted Averaging)
- Self-Calibration Algorithm
- Simulation Configuration & Results
- New finding for HP $\Delta\Sigma$ DAC
- Conclusion

ΔΣ DA Converter (LP model)

Multi-bit DAC Operation (1/3)

✓ We consider "Ternary" case \Rightarrow positive, zero, negative

(\times Binary case \Rightarrow positive, zero)

Multi-bit DAC Operation (2/3)

✓ We consider "Ternary" case \Rightarrow positive, zero, negative

(\times Binary case \Rightarrow positive, zero)

Multi-bit DAC Operation (3/3)

✓ We consider "Ternary" case \Rightarrow positive, zero, negative

(\times Binary case \Rightarrow positive, zero)

Nonlinearity Problem of Multi-bit ΔΣ DAC

- Research Background
- **DWA* Algorithm** (* Data-Weighted Averaging)
- Self-Calibration Algorithm
- Simulation Configuration & Results
- New finding for HP $\Delta\Sigma$ DAC
- Conclusion

Multi-bit DAC (1/2)

Multi-bit DAC (2/2)

Multi-bit DAC + DWA (1/2)

Multi-bit DAC + DWA (2/2)

- Research Background
- DWA* Algorithm (* Data-Weighted Averaging)
- <u>Self-Calibration Algorithm</u>
- Simulation Configuration & Results
- New finding for HP $\Delta\Sigma$ DAC
- Conclusion

Look Up Table: LUT

• Data is stored in LUTs

Output data is selected corresponding to input

For example

Cat age	Human age
1	17
2	23
3	28
4	32
5	36
6	40
7	44
8	48

Self-Calibration Algorithm

- Research Background
- DWA* Algorithm (* Data-Weighted Averaging)
- Self-Calibration Algorithm
- <u>Simulation Configuration & Results</u>
- New finding for HP $\Delta\Sigma$ DAC
- Conclusion

Simulation Configuration (LP model)^{19/29}

- Combination comparison
 - (1) 2nd LP $\Delta\Sigma$ Modu. + Nonlinear DAC
 - (2) 2nd LP $\Delta\Sigma$ Modu. + Nonlinear DAC + DWA (type I)
 - 3 2nd LP $\Delta\Sigma$ Modu. + Nonlinear DAC + self-calibration
 - ④ 2nd LP ΔΣ Modu. + Nonlinear DAC + DWA (type I) + self-calibration (← Prop.)

We verify linearity improvement

Simulation Results (LP model)

SNDR Comparison (LP model) ^{21/29}

- Research Background
- DWA* Algorithm (* Data-Weighted Averaging)
- Self-Calibration Algorithm
- Simulation Configuration & Results

New finding for HP ΔΣ DAC

Conclusion

$\Delta\Sigma$ DA Converter (HP model)

 $\checkmark\,$ Similarly, we have simulated for HP $\Delta\Sigma\,$ DAC

Noise is decreased at high frequency increased at low frequency

Effective DWA Type for HP

✓ We found that DWA type I is effective for HP in the case of the ternary

Effective DWA type

Simulation Results for DWA Type I & II ^{25/29}

SNDR Comparison (HP model)

- Research Background
- DWA* Algorithm (* Data-Weighted Averaging)
- Self-Calibration Algorithm
- Simulation Configuration & Results
- New finding for HP $\Delta\Sigma$ DAC
- <u>Conclusion</u>

Conclusion

- Multi-bit ΔΣ DAC
 - Conventional:

Nonlinearity problem for process variation inside IC chip

Proposed:

Using DWA & self-calibration ⇒ Linearity improvement

New finding
DWA type I
→ Effective

 \Rightarrow Effective for HP in the case of the ternary

Combining Great Things is Wonderful ^{29/29}

