Time-to-Digital Converter Architecture Using Asynchronous Two Sine Waves with Different Frequencies

Kosuke Machida Haruo Kobayashi, Yuki Ozawa Division of Electronics and Informatics Gunma University

> Kobayashi Lab. Gunma University

Research Objective Proposed TDC Principle Individual Circuit Trigger Circuit Logic Circuit Resolution of Proposed TDC SPICE Simulation verification Conclusion

Research Objective Proposed TDC Principle Individual Circuit > Trigger Circuit Logic Circuit Resolution of Proposed TDC SPICE Simulation verification Conclusion

Time-to-Digital Converter

• Time-to-digital converter (TDC) measures timing difference t_0 between t_1 , t_2 and outputs as a digital value D_{out}

TDC Application Examples

Inter-vehicular distance measurement

Satellite distance measurement

Comparison of TDC Architectures

	Conventional TDC	Proposed TDC
Circuit Architecture	START T	$\begin{array}{c} \sin(2\pi f_1 t) \\ \text{START} \\ \text{STOP} \\ \sin(2\pi f_2 t) \end{array} \xrightarrow{f_1} \\ \textbf{Trigger} \\ f_2 \end{array} \xrightarrow{f_1} \\ \textbf{A}_1 \\ \textbf{A}_1 \\ \textbf{A}_2 \\ $
Delay Array	Necessary 🙁	Not necessary 🙂
Self Calibration	Required 🙁	Not required 🙂

Delay array have variations \rightarrow Self-calibration is required

Comparison of frequencies

Different frequencies \rightarrow time resolution \iff measurement time Trade off

Research Objective Proposed TDC Principle Individual Circuit > Trigger Circuit Logic Circuit Resolution of Proposed TDC SPICE Simulation verification Conclusion

Proposed TDC Architecture

Basic Operation of Logic Circuit

How we calculate to timing difference t_0

Timing difference generates deviation points^{12/}

Time resolution is one time difference

• One deviation points means One time difference t' between D_1 and D_2

t_0 = deviation points × one time difference

$$t_0 = \begin{cases} (\overline{n_{all}} - n_{all})t' & (\text{in case } f_1 > f_2) \\ \{n_{beat}/2 - (\overline{n_{all}} - n_{all})\}t' & (\text{in case } f_1 < f_2) \end{cases}$$

Research Objective Proposed TDC Principle Individual Circuit Trigger Circuit Logic Circuit Resolution of Proposed TDC SPICE Simulation verification Conclusion

Trigger Circuit Architecture & Operation^{16/33}

- Output starts to oscillate at rising timing edge of input
- Output waveform with no transient change

Track & Hold Circuit

Trigger Circuit's Simulation Results

Research Objective Proposed TDC Principle Individual Circuit > Trigger Circuit Logic Circuit Resolution of Proposed TDC SPICE Simulation verification Conclusion

Logic Circuit Architecture

D-flop sampled D1 by clock D2

Counter & Update

Research Objective
 Proposed TDC Principle
 Individual Circuit
 Trigger Circuit
 Logic Circuit

Resolution of Proposed TDC
SPICE Simulation verification
Conclusion

Time resolution image

Overlapped outputs

Time Resolution of Proposed TDC

After overlap (in case $f_1 \approx f_2$)

When $f_1 \approx f_2$, the number of n_{beat} increase

27/33

After overlap example

Linearity of Proposed TDC

RMS Error of Proposed TDC

Root Mean Squared (RMS) error of $t_0 = \sqrt{\frac{1}{n_{beat}/2} \sum_{i=1}^{n_{beat}/2} (t_i)^2}$

• t_i shows deviation between set t_0 and calculated t_0

Research Objective Proposed TDC Principle Individual Circuit > Trigger Circuit Logic Circuit Resolution of Proposed TDC SPICE Simulation verification Conclusion

SPICE Simulation Verification of Proposed TDC

• Simulation Conditions $f_1 = 99[MHz], f_2 = 100[MHz], t_0 = 1[ns]$

SPICE Simulation Results

Research Objective Proposed TDC Principle Individual Circuit > Trigger Circuit Logic Circuit Resolution of Proposed TDC SPICE Simulation verification Conclusion

Conclusion

Summary

◆TDC is proposed:

- Using asynchronous two sine waves
- With different frequencies
- No delay line
- No self-calibration required

Future task

- Perform simulations of entire TDC including trigger circuits.
- Considering the case of t0 is larger than $1/(2f_1)$.

Thank you for your attention