Time-to-Digital Converter Architecture Using Asynchronous Two Sine Waves with Different Frequencies

Kosuke Machida
Haruo Kobayashi, Yuki Ozawa

Division of Electronics and Informatics
Gunma University
Outline

- Research Objective
- Proposed TDC Principle
- Individual Circuit
 - Trigger Circuit
 - Logic Circuit
- Resolution of Proposed TDC
- SPICE Simulation verification
- Conclusion
Outline

● Research Objective
 ● Proposed TDC Principle
 ● Individual Circuit
 ➢ Trigger Circuit
 ➢ Logic Circuit
 ● Resolution of Proposed TDC
 ● SPICE Simulation verification
 ● Conclusion
Time-to-Digital Converter

- Time-to-digital converter (TDC) measures timing difference t_0 between t_1, t_2 and outputs as a digital value D_{out}
TDC Application Examples

Inter-vehicular distance measurement

Satellite distance measurement
Comparison of TDC Architectures

<table>
<thead>
<tr>
<th></th>
<th>Conventional TDC</th>
<th>Proposed TDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Architecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay Array</td>
<td>Necessary 🥟</td>
<td>Not necessary 😊</td>
</tr>
<tr>
<td>Self Calibration</td>
<td>Required 😞</td>
<td>Not required 😊</td>
</tr>
</tbody>
</table>

Delay array have **variations** → Self-calibration is required 😊
Comparison of frequencies

Same Frequencies

Clock frequency $\leq 1[GHz]$

$t' \geq \frac{1}{1[GHz]} = 1[ns]$

Different Frequencies

$t' = \left| \frac{1}{f_2} - \frac{1}{f_1} \right|$

example

$f_1 = 1[MHz]$
$f_2 = 0.9999[MHz]$

$t' \cong 0.1[ns]$

Different frequencies \rightarrow time resolution \leftrightarrow measurement time

Trade off
Outline

- Research Objective
- Proposed TDC Principle
- Individual Circuit
 - Trigger Circuit
 - Logic Circuit
- Resolution of Proposed TDC
 - SPICE Simulation verification
- Conclusion
Proposed TDC Architecture

Components

- Trigger Circuit × 2
- Logic Circuit × 4
- Logic Circuit × 1
Basic Operation of Logic Circuit

- $n_{\text{all}}(= n_1 + n_2 \ldots)$
- $\overline{n_{\text{all}}}(= \overline{n_1} + \overline{n_2} \ldots)$
- $n_{\text{beat}} \approx n_2 + \overline{n_2} = n_3 + \overline{n_3} = \ldots = \frac{f_2}{|f_2 - f_1|}$

Example d-flop

output

Q

input

D_1

D_2
How we calculate to timing difference t_0

- Proposed TDC Principle

$$t_0 = \text{deviation points} \times \text{one time difference}$$

Details

$$t_0 = \frac{n_{\text{beat}}}{2} - (\overline{n_{\text{all}}} - n_{\text{all}}) \times t'$$
Timing difference generates deviation points

\[\text{deviation} = \left\{ \frac{n_{\text{beat}}}{2} - \left(\frac{n_{\text{all}}}{2} - n_{\text{all}} \right) \right\} \]

\[= \left\{ \frac{n_2 + n_2}{2} - \left(\left(\frac{n_1 + n_2}{2} + \cdots \right) - \left(n_1 + n_2 + \cdots \right) \right) \right\} \quad \text{(in case } f_1 < f_2) \]
One deviation points means

One time difference t' between D_1 and D_2

\[t' = \left| \frac{1}{f_2} - \frac{1}{f_1} \right| \]

(=time resolution)
\(t_0 = \text{deviation points} \times \text{one time difference} \)

\[
t_0 = \begin{cases}
(\overline{n_{all}} - n_{all})t' & \text{(in case } f_1 > f_2) \\
\{n_{beat}/2 - (\overline{n_{all}} - n_{all})\}t' & \text{(in case } f_1 < f_2)
\end{cases}
\]
Outline

• Research Objective
• Proposed TDC Principle
• Individual Circuit
 ➢ Trigger Circuit
 ➢ Logic Circuit
• Resolution of Proposed TDC
• SPICE Simulation verification
• Conclusion
Trigger Circuit Architecture & Operation

- Output starts to oscillate at rising timing edge of input
- Output waveform with no transient change
Track & Hold Circuit

Vin

Vout

Track

Hold

Track

Hold

Vout=Vin

Vout=Vc

SW

ON

SW

OFF

Track mode

Hold mode

Vin

Vc
Trigger Circuit’s Simulation Results

Sine waves of three-phase alternating

Trigger input

Output

track

hold

track

hold
Outline

- Research Objective
- Proposed TDC Principle
- Individual Circuit
 - Trigger Circuit
 - Logic Circuit
- Resolution of Proposed TDC
- SPICE Simulation verification
- Conclusion
Logic Circuit Architecture

Components

\(D \quad Q \quad \bar{Q} \times \text{some} \)

\(\text{EN n bit counter} \times 2 \)
D-flop sampled D1 by clock D2

Example d-flop

output

\[Q \]

input

\[D_1 \]

\[D_2 \]
Counter & Update

Output: Counter

Digital value

Output: Update
Outline

- Research Objective
- Proposed TDC Principle
- Individual Circuit
 - Trigger Circuit
 - Logic Circuit
- Resolution of Proposed TDC
- SPICE Simulation verification
- Conclusion
Time resolution image

Sampling \(D_1 \) by clock \(D_2 \)

\[(in \ case \ f_1 \ll f_2)\]

Fine time resolution

\[(in \ case \ f_1 \approx f_2)\]

Coarse time resolution?
Overlapped outputs

\[(in \ case \ f_1 \approx f_2) \]

\[D_1 \]

\[D_2 \]

\[(in \ case \ f_1 \ll f_2) \]

Fine time resolution

Short measurement time

\[1/f_1 \]

\[(in \ case \ f_1 \approx f_2) \]

Fine time resolution

Long measurement time

\[1/f_1 \]
After overlap (in case \(f_1 \approx f_2 \))

\[
D_1
\]

\[
t' = \left| \frac{1}{f_2} - \frac{1}{f_1} \right| = \left| \frac{f_1 - f_2}{f_1 f_2} \right|
\]

\[
\lim_{f_1 \rightarrow f_2} t' = \text{Fine time resolution}
\]
When $f_1 \approx f_2$, the number of n_{beat} increase

After overlap example

$n_{\text{beat}} = 5$

$n_{\text{beat}} = 10$

increase $n_{\text{beat}} \approx \frac{f_2}{|f_2 - f_1|} \iff f_1 \approx f_2$

Fine time resolution & High linearity
Linearity of Proposed TDC

\[f_1 < f_2 \]

Low Linearity

\[f_1 \approx f_2 \]

High Linearity
Root Mean Squared (RMS) error of $t_0 = \sqrt{\frac{1}{n_{\text{beat}/2}} \sum_{i=1}^{n_{\text{beat}/2}} (t_i)^2}$

- t_i shows deviation between set t_0 and calculated t_0

Set $t_0 = 1[ns]$
Outline

• Research Objective
• Proposed TDC Principle
• Individual Circuit
 ➢ Trigger Circuit
 ➢ Logic Circuit
• Resolution of Proposed TDC
• SPICE Simulation verification
• Conclusion
SPICE Simulation Verification of Proposed TDC

◆ Simulation Conditions

\[f_1 = 99\,[MHz], \, f_2 = 100\,[MHz], \, t_0 = 1\,[ns] \]

◆ SPICE Simulation Results

At 5[\mu s] \, n_{all} = 210, \, \overline{n_{all}} = 250

\[t_0 = 1.01\,[ns] \quad \text{Error is} \, 1\,[\%] \]
Outline

- Research Objective
- Proposed TDC Principle
- Individual Circuit
 - Trigger Circuit
 - Logic Circuit
- Resolution of Proposed TDC
- SPICE Simulation verification
- Conclusion
Conclusion

Summary

◆ TDC is proposed:
 - Using asynchronous two sine waves
 - With different frequencies
 - No delay line
 - No self-calibration required

Future task

◆ Perform simulations of entire TDC including trigger circuits.
◆ Considering the case of t0 is larger than \(1/(2f_1)\).
Thank you for your attention