

Architecture of High Performance Successive Approximation Time Digitizer

T. IDA Y. OZAWA J. RICHEN S. SAKURAI S. TAKIGAMI N. TSUKIJI H. ARAI R. SHIOTA H. KOBAYASHI

Division of Electronics and Informatics, Gunma University, Japan

Socionext Inc., Japan

群馬大

OUTLINE

- Research background
- What is TDC ?
- Configuration of SAR TDC
- Fine Time Resolution with 2-step
- Self-calibration for absolute delay variation
- One-shot timing measurement using trigger circuit
- Conclusion

Development of highly - linear, fine time-resolution TDC for high-speed digital I/O interface timing measurement

Background

facing difficulties due to reduced supply voltage

Analog circuit design difficultly

Time-to-Digital Converter : TDC measure two time differences, outputs digitally

Innovation

- [1] Two Step SAR TDC
- ⇒ Fine time resolution

[2] Self – Calibration \Rightarrow Linear TDC

- [3] Trigger Circuit
- \Rightarrow One shot timing measurement

Configuration of SAR TDC

SAR TDC

Operation of SAR TDC (STEP 1)

Operation of SAR TDC (STEP 2)

Operation of SAR TDC (STEP 3)

Operation of SAR TDC (STEP 4)

Residual Time

Fine Time Resolution with 2 Step Method

Fine Time Resolution TDC

Attach sub TDC to conventional SAR TDC

SAR+Vernier-Type TDC (1st step)

SAR+Vernier-Type TDC (2nd step)

Operation of 3bit SAR+3bit SAR-Vernier TDC

Operation of 3bit SAR+3bit SAR-Vernier TDC

Generation of Reference Clock

Time (Tref) can be easily and accurately generated

Calibration Algorithm in 2 step SAR TDC

Measurement Error with Respect to Estimate

Measurement error with respect to the estimate of τ_1

Measurement error with respect to the estimate of $\tau_{\rm 3}$

 $(\tau_3 = \tau_1 - \tau_2)$

Variation of Error with Respect to Estimated Value

SAR + Vernier TDC Linearity Problem

Gap between Real and Ideal

2017/11/16

Occurs when the integer part switches

Make Redundancy

Circuit configuration with redundancy

Problems in Operation of SAR

29/35

Trigger circuit : Digital circuit with two thresholds

"Circuit that oscillates with constant phase with zero phase at input timing signal "

Voltage Signal & Time signal

30/35

Single-shot Timing Measurement Using Trigger Circuit

Trigger Circuit example

Circuit configuration of One-Shot Measurement

Research subject

- Fine time resolution and high linearity TDC circuit with small circuit / low power consumption
- Enable single-shot timing measurement with SAR TDC

Achievement

- Fine time resolution circuit configuration
- Self calibration in absolute error
- Improve circuit linearity with buffer redundancy for two-step SAR TDC
- One-shot timing measurement using trigger circuit

Thank You for Listening

「此一时,彼一时」

孟子(公孫丑下)

35/35

The times always change

Time is always constant

