Delay-time Suppression Technique for DC/DC Buck Converter Using Voltage Mode PWM Control

M. W. D. SAHAN *

N.Tsukiji, Y.Kobori, K. Asaishi, N.Takai, H. Kobayashi

Faculty of Science and Technology

Kobayashi laboratory

Gunma University

Paper 13

- 1. Purpose of This work
- 2. Research Background
- 3. Approach
- 4. Delay time suppression
- 5. Measurements results & Comparisons
- 6. Conclusion

- 1. Purpose of This work
- 2. Research Background
- 3. Approach
- 4. Delay time suppression
- 5. Measurements results & Comparisons
- 6. Conclusion

- 1. Purpose of This work
- 2. Research Background
- 3. Approach
- 4. Delay time suppression
- 5. Measurements results & Comparisons
- 6. Conclusion

Research background

- 1. Purpose of This work
- 2. Research Background
- 3. Approach
- 4. Delay time suppression
- 5. Measurements results & Comparisons
- 6. Conclusion

Approach

iPod Charger

ISPACS – XIAMEN 7-9 November 2017

Delay time Suppression

- 1. Purpose of This work
- 2. Research Background
- 3. Approach
- 4. Delay time suppression
- 5. Measurements results & Comparisons
- 6. Conclusion

Delay time Suppression

Proposed Converter Architecture

Slide 12

Detection circuit

Amplification circuit & Control circuit Slide 14

- 1. Purpose of This work
- 2. Research Background
- 3. Approach
- 4. Delay time suppression
- 5. Measurements results & Comparisons
- 6. Conclusion

Simulation setup

Simulation results

Simulation Results

Logical calculation(1)

Logical calculation (2)

Comparison with Undershoot

Conventional method

Inductance current does not change even if load current is generated

proposed method

When load current occur, Inductance current rises up at moment

$$\frac{T_{ON}}{T} \times 360^\circ = \text{Phase}$$

Phase Between -180° to 0°

Comparison with Undershoot

Undershoot

NO effects in Conventional method & proposed method

Phase Between 0° to 180°

Comparison with Overshoot

Overshoot

NO effects in Conventional method and proposed method

Phase Between -180° to 0°

Comparison with Overshoot

Conventional method

Inductance current does not change even if load current is occurred

proposed method

When load current occur, Inductance current rises down at moment

Phase Between 0° to 180°

Slide 24

Comparison with Clock Frequency(1) Slide 25

Phase -100°

When the load current occur, inductance current rises up at moment

Phase 90°

Inductance current does not change even if load current is occurred

Phase Between 0° to 180° **No effect**

Comparison with Clock Frequency(2) Slide 26

Phase -90°

When the load current occur, Inductance current rises up at moment

Phase 90°

Inductance current does not change even if load current is occurred

Phase Between -180° to 0° **No effect**

Comparison with Load current(1)

Phase -100°

When the load current occur, Inductance current rises up at moment

Slide 27

Phase 90°

Inductance current does not change even if load current is occurred

Phase Between 0° to 180° **No effect**

Comparison with Load current(2)

Phase -90°

When load current occur, Inductance current rises up at moment

Phase 90°

Inductance current does not change even if load current is occurred

Phase Between -180° to 0° **No effect**

Slide 28

Result of conventional & proposed Slide 29

Conventional proposed

Results with frequencies

Undershoot Conventional Overshoot proposed Slide 30

Results with load currents

Conventional

proposed

- 1. Purpose of This work
- 2. Research Background
- 3. Approach
- 4. Delay time suppression
- 5. Measurements results & Comparisons
- 6. Conclusion

Summary

- Delay time suppression when load current occur, high-pass filter differentiates signal, amplifies, turns on transistor power switch immediately
- Proposed Buck DC/DC converter output voltage
 - undershoot/overshoot decreases approximately 80%
 - verification of calculations & simulations results
- Results Confirmed also in following
 - regulate clock frequency
 - undershoot/overshoot voltage with phase
 - load current range

Thanks for your attendance of my speech

http://www.dreamworks.com/kungfupanda/images/uploads/characters/li_action.png

ISPACS - XIAMEN 7-9 November 2017