

Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits Based on Uncertainty Relationships

H. Kobayashi I. Shimizu N. Tsukiji M. Arai K. Kubo H. Aoki

Gunma University Oyama National College of Technology Teikyo Heisei University

Gunma University Kobayashi Lab

JAPAN

My First Research

Computer with Superconductor (Josephson Device)

Under supervision of Prof. Ko Hara (原宏) at University of Tokyo Physicist

Undergraduate (Bachelor) course, 4th year

[1] K. Hara, H. Kobayashi, S. Takagi, F. Shiota, "Simulation of a Multi-Josephson Switching Device", Japanese J. of Applied Physics (1980).

Research Motivation of This Paper

Our Statement

Uncertainty relationships are everywhere in electronic circuits

Ultimately, some would converge to Heisenberg uncertainty principle in quantum physics.

Contents

Research Objective

- Uncertainty Principle and Relationship
- Invariant Quantity
- Electronic Circuit Performance Analogy to Uncertainty Relationship and Invariant
- Waveform Sampling Circuit

Conclusion

Contents

Research Objective

- Uncertainty Principle and Relationship
- Invariant Quantity
- Electronic Circuit Performance Analogy to Uncertainty Relationship and Invariant
- Waveform Sampling Circuit

Conclusion

Research Objective

Our Objective

In analog electronic circuits

- Clarify tradeoff among their performance indices
- Provide their fundamental limitation

Our Approach

Based on

- Uncertainty principle in quantum mechanics
- Uncertainty relationship in signal processing

Contents

Research Objective

Uncertainty Principle and Relationship

- Invariant Quantity
- Electronic Circuit Performance Analogy to Uncertainty Relationship and Invariant
- Waveform Sampling Circuit

Conclusion

Uncertainty Principle in Quantum Mechanics

W. K. Heisenberg

$\Delta t \Delta E \geq h/(4\pi)$

t: time, *E*: energy

 $\Delta x \Delta p \ge h/(4\pi)$

x: position, *p*: momentum.

These cannot be proved \implies principle.

Uncertainty Relationship in Signal Processing (1)

Discrete Fourier Transform (DFT)

Sampling frequency : fs Sampling period: Ts (= 1/fs)

Number of DFT points :N

 $\Delta f = fs/N = 1/(Ts N)$

Time & frequency resolution

 $\Delta f Ts = 1/N$

This can be proved mathematically rightarrow Relationship

Uncertainty Relationship in Signal Processing (2)

 Uncertainty Relationship between Time & Frequency of Continuous Waveform

$$\sigma_{\tau}\sigma_{\omega} \geq \frac{1}{2}$$

This can be proved mathematically \implies *Relationship*

Contents

Research Objective

Uncertainty Principle and Relationship

Invariant Quantity

Electronic Circuit Performance Analogy to Uncertainty Relationship and Invariant

Waveform Sampling Circuit

Conclusion

Importance of Invariant (1)

Invariant quantity clarify phenomena & characteristics

Conservation Law in Physics :

- Energy conservation law
- Mass conservation law
- Momentum conservation law
- Charge conservation law

Importance of Invariant (2)

Invariant quantity clarify phenomena & characteristics

Fixed-Point in Mathematics :

f(x) = x

Utility for Voyage

Compass

Polaris

Contents

Research Objective

Uncertainty Principle and Relationship

- Invariant Quantity
- <u>Electronic Circuit Performance Analogy</u> to Uncertainty Relationship and Invariant
- Waveform Sampling Circuit

Conclusion

Gain, Signal Band and Power

Amplifier Performance

 $FOM = \frac{Power}{Gain \cdot Bandwidth}$ Technology constant

 \rightarrow Converge to uncertainty principle

conjecture

ADC Sampling Speed, Resolution and Power

FOM =

Resolution: Vfull $/\Delta V = 2^n$

Power: P

 $FOM = \Delta t \cdot \Delta V \cdot P / V_{full}$ $= \Delta t \cdot P / 2^{n}$

Voltage Resolution • Power Sampling Speed

Technology constant

 $FOM \rightarrow Smaller, ADC \rightarrow Better$

→ Converge to uncertainty principle conjecture

Clock Jitter, Power

Power \rightarrow larger, Jitter \rightarrow smaller

Noise, Capacitor

Analogy

p (momentum) ⇔ Q (charge) v (velocity) ⇔ V (voltage) m (mass) ⇔ C (capacitor) Momentum conservation law ⇔ Charge conservation law

Uncertainty principle $\Delta x \Delta p \ge K$ \Leftrightarrow $\Delta V f \Delta Q \ge K$ \Leftrightarrow $C \Delta V^2 f \ge K$ Noise bandwidth: f \checkmark Noise power $\Delta V^2 = kT/C$ $C \rightarrow large,$ Noise \rightarrow small

Noise, Capacitor (2)

For a given T=RC
 the same gain & phase characteristics
 for different (R1, C1), (R2, C2), ...
 with R1 C1 = R2 C2 = ... = T

$$Ec = (1/2) C V_{out}^{2}$$
$$V_{noise}^{2} = kT/C$$

C → large, R → small
 Same gain & phase characteristics
 Low noise
 Large energy

Transfer function

G(s) = 1/(1 + sRC)

Capacitor Charge & Loss

$$E_{loss} = (R \cdot I) \cdot I \cdot T$$

= R \cdot C \cdot V \cdot I
$$V_{out} = I \cdot T / C$$

I : Charge Current

T: Charge Duration

Eloss •T= R•C•Vout

Uncertainty relationship

For given R, C, V_{out} $I \rightarrow small, T \rightarrow long \implies E_{loss} \rightarrow small$

Analog Electronic Circuits

Performance tradeoffs are everywhere in circuits $\Delta a \Delta b \geq K$

In some cases, these can be proved.
 Uncertainty relationship

In other cases, these can NOT be proved.

For a given technology

 $\Delta a \Delta b = K$ K: Technology constant

Technology \rightarrow advance \longrightarrow K \rightarrow smaller

Conjecture: this converges to uncertainty principle

Analog Circuit and Quantum Mechanics

Myth

- Real world signals \rightarrow analog
- Computer world signals \rightarrow digital.

Truth

- quantum mechanics →
 signals in nature → digital (discrete).
- Current \rightarrow average of electrons' moves
- Electronic noises \rightarrow their variation.

Conjecture

- Analog electronic circuit performance
 - Limited by quantum mechanics

Analogy

In Physics, analogy is just a coincidence, NOT inevitable.

Analogy

/	p (momentum)	⇔	Q (charge)
	v (velocity)	⇔	V (voltage)
	m (mass)	⇔	C (capacitor)
	Momentum conservation law		
	⇔	Charge conservation law	

Difference

Any connection of m1 & m2 > m1, m2

Series connection of C1 & C2 < C1, C2

Bridge Through Plank Constant

Measurement and Simulation

Measurement : Active, Passive Active: Stimulus Response Device state Disturbed.

Passive: No stimulus Device state —> Not disturbed.

Uncertainty principle

all measurements disturb device state.

Circuit simulation No disturbance.

Contents

Research Objective

Uncertainty Principle and Relationship

Example of Uncertainty Relationship In Signal Processing

nce Analogy o and Invariant

Waveform Sampling Circuit

[2] M. Arai , H. Kobayashi , et. al., "Finite Aperture Time Effects in Sampling Circuit," IEEE 11th International Conference on ASIC, Chengdu (Nov. 2015).

Waveform Sampling

- Finite aperture time (non-zero turn-off time)
- Aperture jitter

Sampling Circuit

29/50

Finite Aperture Time

Finite transition time from track to hold modes

Analogy with Camera Shutter Speed

Blurred

Sampling Circuit: Finite Aperture Time

High , frequency

Acquired signal

Low pass filtered

31/50

Signal Frequency and Aperture Time

Higher frequency signal ⇒ More affected by finite aperture time

Transfer Function Derivation

Derived Transfer Function

Transfer function in case of finite aperture time

[3] A. Abidi, M. Arrai, K. Niitsu, H. Kobayashi, "Finite Aperture Time Effects in Sampling Circuits," 24th IEICE Workshop on Circuits and Systems, Awaji Island, Japan (Aug. 2011)

Consistency with Zero Aperture Time Case

$$\frac{V_C}{V_{in}} = \frac{sinc(\omega\tau_2)}{sinc(\omega\tau_2) + j\omega\tau_1}$$
$$(\tau_1 = RC , \tau_2 = \tau)$$

Transfer function in case of finite aperture time

$$\tau_{2} \rightarrow 0$$

$$\int sinc(\omega\tau_{2}) \rightarrow 1$$

$$\frac{V_{C}}{V_{in}} = \frac{1}{1 + j\omega\tau_{1}}$$

$$(\tau_{1} = RC)$$

$$V_{in} \circ \frac{R}{\int C}$$

Transfer function in case of zero aperture time

τ₁, τ₂ Effects to Bandwidth

Numerical calculation from the derived transfer function

 $au_1 (= R C)$: fixed au_2 (aperture time) : varied

Bandwidth starts to decrease at $\tau_2 / \tau_1 = 1$

 τ_1 , τ_2 effects to bandwidth are comparable.

SPICE Simulation Verification

Results

Results

Comparison of -3dB Bandwidth

Simulation ≠ Theory

Large discrepancies !

NMOS ON-Conductance Nonlinearity

Define effective aperture time $au_{
m eff}$

ON-Conductance and Effective Aperture Time

Empirical Effective Aperture Time Derivation

$$y = \left(\mathcal{Y}_{V_{th}} - 9 \times 10^{-8} \frac{W}{L} \cdot V_{th} \right) e^{\left(\frac{x}{V_{th}} - 1 \right)} + 9 \times 10^{-8} \frac{W}{L} \cdot V_{th}$$

42/50

Discussion Again

Various Values for RC, W

44/50

Trade-off of Time Constant and Bandwidth

Summary

- Derived explicit transfer function of sampling circuit with finite aperture time effect.
- Verified it with SPICE simulation
- Introduced concept of effective finite aperture time
- Showed uncertainty relationship between time constants and bandwidth in sampling circuit.

Contents

Research Objective

- Uncertainty Principle and Relationship
- Invariant Quantity
- Electronic Circuit Performance Analogy to Uncertainty Relationship and Invariant
- Waveform Sampling Circuit

Conclusion

Conclusion

Our strong belief:

Analog electronic circuit

Explained with

Analogy to uncertainty principle/relationship.

Uncertainty principle and relationship
 Its ultimate performance limitation

Its design tradeoff as well as FOM

Final Statement

Current status of circuit design and analysis area

Only individual techniques have been developed.

大道以多岐亡羊,學者以多方喪生 (列子)

We need to establish a unified theory for circuit design and analysis area.

Thank you for listening

謝謝

是知度知之子

