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My First Research

Computer with Superconductor (Josephson Device)

Under supervision of Prof. Ko Hara (原 宏)
at University of Tokyo 

Physicist

Undergraduate (Bachelor) course, 4th year 

[1] K. Hara, H. Kobayashi, S. Takagi, F. Shiota, “Simulation of 
a Multi-Josephson Switching Device'', Japanese J. of Applied Physics (1980).
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Research Motivation of This Paper

time

Quantum 
state 1

Quantum 
state 2

ΔE

Δt

ΔE Δt ≥ h/(4π) Uncertainty principle

Transition time Δt Time uncertainty 

My strong impression :

State transition
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Our Statement

Uncertainty relationships are everywhere 
in electronic circuits

Ultimately, some would converge to 
Heisenberg uncertainty principle 

in quantum physics.

陰陽思想
太極図

Our conjecture
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Research Objective

● Our Objective
In analog electronic circuits
- Clarify tradeoff among their performance indices  
- Provide their fundamental limitation

● Our Approach
Based on
- Uncertainty principle in quantum mechanics
- Uncertainty relationship in signal processing
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Uncertainty Principle in Quantum Mechanics

Δx Δp ≥ h/(4π) 

Δt ΔE ≥ h/(4π) 

These cannot be proved principle.

x: position, p: momentum.

t: time,  E: energy

W. K. Heisenberg
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Uncertainty Relationship in Signal Processing (1)

Sampling frequency : fs
Sampling period: Ts (= 1/fs)

Δf = fs/N = 1/(Ts N) 

Δf Ts = 1/N 

● Discrete Fourier Transform (DFT)

Number of DFT points :N

Time & frequency resolution

This can be proved mathematically Relationship

frequency
Δf

0
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Uncertainty Relationship in Signal Processing (2)

● Uncertainty Relationship 
between Time & Frequency of Continuous Waveform

This can be proved mathematically Relationship

11/50



Contents

● Research Objective

● Uncertainty Principle and Relationship

● Invariant Quantity

● Electronic Circuit Performance Analogy
to Uncertainty Relationship and Invariant

● Waveform Sampling Circuit

● Conclusion 

12/50



Importance of Invariant (1)

・Energy conservation law
・Mass conservation law
・Momentum conservation law
・Charge conservation law

Invariant quantity         
clarify phenomena & characteristics

Conservation Law in Physics :

vmv2v1 m2m1 m1 m2

p1 = m1 v1, p2 = m2 v2 p1’= m1 vm, p2’=m2 vm

p1+ p2 = p1’ + p2’
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Importance of Invariant (2)
Invariant quantity         

clarify phenomena & characteristics

f(x) = x 

Fixed-Point in Mathematics :

Compass Polaris

Utility for Voyage
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Gain, Signal Band and Power

● For a given amplifier

Gain ・ bandwidth = constant

Gain → large,     bandwidth → narrow

Power
Gain ・ Bandwidth

FOM = Technology constant

● Amplifier Performance

→      Converge to uncertainty principle

conjecture

G
ai

n
 [

d
B

]

Frequency [Hz]
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ADC Sampling Speed, Resolution and Power

Resolution:   Vfull /ΔV = 2n

FOM =  Δt・ΔV･P / Vfull

= Δt・P / 2n

Power: P

Sampling period: Δt FOM = 

Voltage Resolution・Power
Sampling Speed 

FOM → Smaller,  ADC → Better

Technology constant

→      Converge to uncertainty principle
conjecture 17/50



Clock Jitter, Power

Δt ･E ≥ K1

Clock jitter: Δt

Clock generator energy : E
power : P

Design tradeoff

(Δt / T ) P ≥ K1

T

Power → larger,   Jitter → smaller
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Noise,  Capacitor 

p (momentum)   ⇔ Q (charge) 

v (velocity)    ⇔ V (voltage) 

m (mass)   ⇔ C (capacitor) 

Momentum conservation law
⇔ Charge conservation law

Uncertainty principle
Δx Δp ≥ K ⇔ ΔV f ΔQ ≥ K

⇔ C  ΔV2 f ≥ K 

ΔV2 = kT/CNoise power

Noise bandwidth: f

Analogy

C → large,     Noise → small 19/50



Noise,  Capacitor (2)

Vout(t)

R

+ +

--

C

Transfer function

G(s) = 1/ (1 + sRC )

Vin(t)

Ec = (1/2) C Vout

● For a given T=RC
the same gain & phase characteristics 
for different (R1, C1), (R2, C2), …
with  R1 C1 = R2 C2 = … = T

Vnoise = kT/ C

● For a given Vout

2

2

C → large, R → small
Same gain & phase characteristics
Low noise
Large energy
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Capacitor Charge & Loss

I

Vout

C

R   

Eloss = (R・I )・I・T
= R・C・V・I

Vout = I・T / C

Eloss

Eloss ・T=  R・C・Vout

For given R, C, Vout

I → small,   T → long            Eloss → small

Uncertainty relationship 

I : Charge Current
T: Charge Duration
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Analog Electronic Circuits

Δa Δb ≥ K

Performance tradeoffs are everywhere in circuits

Δa Δb  = K        K: Technology constant

For a given technology

Technology → advance                  K   → smaller

● In some cases, these can be proved. 
Uncertainty relationship

● In other cases, these can NOT be proved.

Conjecture: this converges to uncertainty principle
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Analog Circuit and Quantum Mechanics

Myth
- Real world signals → analog
- Computer world signals → digital.

Truth
- quantum mechanics →

signals in nature → digital (discrete).

- Current → average of electrons’ moves
- Electronic noises → their variation.

Conjecture
- Analog electronic circuit performance

→ Limited by quantum mechanics
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Analogy 

p (momentum)   ⇔ Q (charge) 

v (velocity)    ⇔ V (voltage) 

m (mass)   ⇔ C (capacitor) 

Momentum conservation law
⇔ Charge conservation law

Analogy

In Physics, analogy is just a coincidence,
NOT inevitable.

Difference

Any connection of  m1 & m2  > m1, m2   

Series connection of  C1 & C2  <  C1, C2   

m2m1

C1 C2
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Bridge Through Plank Constant

“Mehr Licht !”

by J. W. von Goethe 

“Let there be light !”

Old testament

Energy in the light:   E = (h/(2π)) ω

ΔE Δτ ≥ h/(4π) 

Uncertainty Principle

Δω Δτ ≥ 1/2                                    

(h/(2π)) Δω Δτ ≥ h/(4π) 

Uncertainty Relationship
Analogy to Principle

25/50



Measurement and Simulation

Measurement : Active, Passive

Active: Stimulus Device
Response Measured
Device state Disturbed.

Passive: No stimulus
Device state Not disturbed.

Uncertainty principle
all measurements disturb device state.

Circuit simulation No disturbance.
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[2] M. Arai , H. Kobayashi , et. al.,“Finite Aperture Time Effects in Sampling Circuit,”
IEEE 11th International Conference on ASIC, Chengdu (Nov. 2015).

Example of
Uncertainty Relationship
In Signal Processing
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Waveform Sampling

- Finite aperture time  (non-zero turn-off time)
- Aperture jitter

time

― analog signal

● Sampled point

suffers from

vo
lt

ag
e
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Sampling Circuit

29

時間

電
圧
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Vin Vout

C
SW
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SW
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Finite Aperture Time

30

時間

電
圧

時間
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圧
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SW

Vin Vout

C
SW

Vin Vout

• SW:  ON

•Vout(t) = Vin(t)

Track mode

•SW: OFF

•Vout(t) = Vin(tOFF)

Hold mode
time

time

vo
lt

ag
e

vo
lt

ag
e

Finite transition time from track to hold modes

30/50



Analogy with Camera Shutter Speed 

Camera: Finite Shutter Speed                    Sampling Circuit:
Finite Aperture Time

Moving Object

Blurred

Input signal

Acquired signal

High 
frequency

Low pass 
filtered
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Signal Frequency and Aperture Time

Higher frequency signal ⇒ More affected by finite aperture time

ＨT

time

time

Low frequency

Aperture time
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Vg
Vin
Vc

Transfer Function Derivation

Track Hold Circuit

+

-

Voltage

Time

Obtain values of ●

Equivalent time sampling

Obtain gain, phase for each frequency

Frequency transfer function

SW
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Derived Transfer Function

Transfer function in case of finite aperture time

Track Hold Circuit

+

-

SW

τ1 = R C

[3] A. Abidi, M. Arrai, K. Niitsu, H. Kobayashi, “Finite Aperture Time Effects in Sampling Circuits,”
24th IEICE Workshop on Circuits and Systems, Awaji Island, Japan (Aug. 2011)
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Consistency with Zero Aperture Time Case

Transfer function in case of finite aperture time

Transfer function in case of zero aperture time
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τ1, τ2 Effects to Bandwidth

τ1 (= R C)

τ2 (aperture time) : varied
: fixed

Bandwidth starts to decrease at τ2 / τ1= 1

τ1, τ2 effects to bandwidth are comparable.

Numerical calculation from the derived transfer function
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Vg
Vin
Vc

SPICE Simulation Verification

Track Hold Circuit

+

-

Voltage

Time

Obtain values of ●

Equivalent time sampling

Obtain gain, phase for each frequency

Frequency transfer function
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simulation
theory

Comparison of -3dB Bandwidth
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NMOS ON-Conductance Nonlinearity

Effective aperture time 
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ON-Conductance and Effective Aperture Time

Region                  Effective aperture time
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Empirical Effective Aperture Time Derivation
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Trade-off of Time Constant and Bandwidth

Time

Short

Long

Wide

Narrow

Aperture time Bandwidth

 RC time constant and bandwidth  Aperture time and bandwidth

Band

RC         
bandwidth
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Summary

● Derived explicit transfer function 
of sampling circuit 
with finite aperture time effect.

● Verified it with SPICE simulation

● Introduced concept of effective finite aperture time 

● Showed uncertainty relationship 
between time constants and bandwidth
in sampling circuit.
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Conclusion

Analog electronic circuit

● Its design tradeoff as well as FOM

Explained with

Analogy to uncertainty principle/relationship.

● Uncertainty principle and relationship

Its ultimate performance limitation

Our strong belief:
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Final Statement

大道以多岐亡羊，學者以多方喪生
（列子）

Current status of circuit design and analysis area

We need to establish a unified theory 
for circuit design and analysis area.

Only individual techniques have been developed.
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Thank you for listening

謝謝
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