# Design of Operational Amplifier Stability and Phase Margin Using Routh-Hurwitz Method

王建龍 築地伸和 小林春夫

群馬大学大学院 理工学府電子情報部門



- Research Objective & Background
- Stability Criteria
  - Nyquist Criterion
  - Routh-Hurwitz Criterion
- Relationship between Routh-Hurwitz criterion parameter with phase margin
- Simulation Verification

Discussion & Conclusion

- Research Objective & Background
- Stability Criteria
  - Nyquist Criterion
  - Routh-Hurwitz Criterion
- Relationship between Routh-Hurwitz criterion parameter with phase margin

Simulation Verification

Discussion & Conclusion

### Research Background (Stability Theory)

### Electronic Circuit Design Field

- Bode plot (>90% frequently used)
- Nyquist plot

### Control Theory Field

- Bode plot
- Nyquist plot
- Nicholas plot
- Routh-Hurwitz stability criterion
  - → Very popular in control theory field
    but rarely seen in electronic circuit books/papers
- Lyapunov function method

2018/3/5

# Electronic Circuit Text Book

We were NOT able to find out any electronic circuit text book which describes Routh-Hurwitz method for operational amplifier stability analysis and design!







Gray



Maloberti



Martin

None of the above describes Routh-Hurwitz. Only Bode plot is used.

# Control Theory Text Book

Most of control theory text books describe Routh-Hurwitz method for system stability analysis and design!









### Research Objective

### Our proposal

#### For

Analysis and design of operational amplifier stability

### Use

Routh-Hurwitz stability criterion



#### We can obtain

- Explicit stability condition for circuit parameters (which can NOT be obtained only with Bode plot)
- Monotonic relationship between R-H criterion parameter with phase margin

Research Objective & Background

- Stability Criteria

   Nyquist Criterion

   Routh-Hurwitz Criter Bode plot
- Relationship between Routh-Hurwitz criterion parameter with phase margin
- Simulation Verification

Discussion & Conclusion

# Nyquist plot

- Open-loop frequency characteristic
  - Closed-loop stability
- Necessary and sufficient condition:

When 
$$\omega = 0 \rightarrow \infty$$
,  $N = P - Z$ 

$$N = P - Z$$



Nyquist plot of open-loop system

N: number, Nyquist plot anti-clockwise encircle point (-1,j0).

- P: number, positive roots of open-loop characteristic equation.
- Z: number, positive roots of closed-loop characteristic equation.
- If the open-loop system is stable(P=0), the Nyquist plot mustn't encircle the point (-1,j0).



$$\angle G_{open}(j\omega_0) = -\pi, \left|G_{open}(j\omega_0)\right| < 1$$

### Phase Margin from Bode Plot

GX precedes PX Feedback system is stable

Greater spacing between GX and PX



 $\omega_1$ : gain crossover frequency

Phase margin: PM =  $180^{\circ} + \angle fA(\omega = \omega_1)$ 

Bode plot is useful,

but it does NOT show explicit stability conditions of circuit parameters.

- Research Objective & Background
- Stability Criteria
  - Nyquist Criterion
  - Routh-Hurwitz Criterion
- Relationship between Routh-Hurwitz criterion parameter with phase margin
- Simulation Verification

Discussion & Conclusion

### Routh Stability Criterion

#### Characteristic equation:

$$D(s) = \alpha_n s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_1 s + \alpha_0 = 0$$

#### Routh table

Sufficient and necessary condition:

(i) 
$$\alpha_i > 0 \text{ for } i = 0, 1, ..., n$$

(ii) All values of Routh table's first columns are positive.

| $S^n$     | $\alpha_n$                                                                       | $\alpha_{n-2}$                                                                   | $\alpha_{n-4}$ | $\alpha_{n-6}$ |     |
|-----------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------|----------------|-----|
| $S^{n-1}$ | $\alpha_{n-1}$                                                                   | $\alpha_{n-3}$                                                                   | $\alpha_{n-5}$ | $\alpha_{n-7}$ | ••• |
| $S^{n-2}$ | $\beta_1 = \frac{\alpha_{n-1}\alpha_{n-2} - \alpha_n\alpha_{n-3}}{\alpha_{n-1}}$ | $\beta_2 = \frac{\alpha_{n-1}\alpha_{n-4} - \alpha_n\alpha_{n-5}}{\alpha_{n-1}}$ | $eta_3$        | $eta_4$        |     |
| $S^{n-3}$ | $\gamma_1 = \frac{\beta_1 \alpha_{n-3} - \alpha_{n-1} \beta_2}{\beta_1}$         | $\gamma_2 = \frac{\beta_1 \alpha_{n-5} - \alpha_{n-1} \beta_3}{\beta_1}$         | $\gamma_3$     | $\gamma_4$     |     |
| :         | :                                                                                | :                                                                                |                |                |     |
| $S^0$     | $\alpha_0$                                                                       |                                                                                  |                |                |     |

Mathematical test



Determine whether given polynomial has all roots in the left-half plane.

- Research Objective & Background
- Stability Criteria
  - Nyquist Criterion
  - Routh-Hurwitz Criterion
- Relationship between Routh-Hurwitz criterion parameter with phase margin
  - Ex.1: Two-stage amplifier with C compensation
  - Ex.2: Two-stage amplifier with C, R compensation
- Simulation Verification

2.8/3/5 iscussion & Conclusion

- Research Objective & Background
- Stability Criteria
  - Nyquist Criterion
  - Routh-Hurwitz Criterion
- Relationship between Routh-Hurwitz criterion parameter with phase margin

Ex.1: Two-stage amplifier with C compensation

Ex.2: Two-stage amplifier with C, R compensation

Simulation Verification

2.8/3/5 iscussion & Conclusion

### Amplifier Circuit and Small Signal Model



(a) Transistor level circuit

Fig.1 Two-pole amplifier with inter-stage capacitance

Open-loop transfer function from small signal model

$$A(s) = \frac{v_{out}(s)}{v_{in}(s)} = A_0 \frac{1 + b_1 s}{1 + a_1 s + a_2 s^2}$$

$$b_1 = -\frac{C_r}{G_{m2}}$$

$$A_0 = G_{m1} G_{m2} R_1 R_2$$

$$a_1 = R_1C_1 + R_2C_2 + (R_1 + R_2 + R_1G_{m2}R_2)C_r$$
  $a_2 = R_1R_2(C_1C_2 + C_1C_r + C_2C_r)$ 

# Routh-Hurwitz method

Closed-loop transfer function:

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{A(s)}{1 + fA(s)} = \frac{A_0(1 + b_1 s)}{1 + fA_0 + (a_1 + fA_0b_1)s + a_2 s^2}$$



Closed-loop configuration

Explicit stability condition of parameters:

$$\theta = a_1 + fA_0b_1$$
  
=  $R_1C_1 + R_2C_2 + (R_1 + R_2)C_r + (G_{m2} - fG_{m1})R_1R_2C_r > 0$ 

*θ*: time dimension parameter

Relationship:  $\theta$  and phase margin



#### Short-channel CMOS parameters:

$$R_1 = r_{on} || r_{op} = 111k\Omega$$

$$R_2 = r_{op} || R_{ocasn} \approx r_{op} = 333k\Omega$$

$$G_{m1} = g_{mn} = 100 \, uA/V$$

$$G_{m2} = g_{mp} = 180 \, uA/V$$

$$C_1 = C_{dg4} + C_{dg2} + C_{gs7} = 13.6 fF$$

$$C_2 = C_L + C_{gd8} \approx C_L + 1.56 fF$$
  
= 101.56 fF ( $C_L = 100 fF$ )

# Data Processing by MATLAB

• Data collection: [GM, PM,  $F_{gm}$ ,  $F_{pm}$ ]=margin(G)

| f=0.01                  |      |      |      |      |      |      |      |      |      |
|-------------------------|------|------|------|------|------|------|------|------|------|
| $C_{r1}$ [fF]           | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |
| θ [uS]                  | 0.11 | 0.18 | 0.25 | 0.32 | 0.39 | 0.46 | 0.53 | 0.60 | 0.67 |
| PM [degree]             | 16   | 19   | 22   | 24   | 27   | 29   | 31   | 33   | 34   |
| GM [dB]                 | 9.1  | 7.6  | 7.0  | 6.6  | 6.4  | 6.3  | 6.2  | 6.0  | 6.0  |
| $F_{\mathrm{g}m}$ [GHz] | 4.5  | 3.4  | 2.9  | 2.6  | 2.3  | 2.1  | 2.0  | 1.9  | 1.8  |
| $F_{pm}$ [GHz]          | 2.6  | 2.1  | 1.8  | 1.5  | 1.4  | 1.2  | 1.1  | 1.0  | 9.4  |

Data fitting: p=polyfit(x,y,n)
 Curve Fitting Tool

# Data Fitting Result

#### Fitted Curve



Fig.2 Relationship between PM with parameter  $\theta$  at variation feedback factor f conditions.

- Monotonic relationship
- Following with the increase of parameter's value
  - the phase margin will be increased feedback system will be more stable

# f = 0.01 Condition

#### Relation function:

$$PM = f_1(\theta)$$
= 2.601 $e^{28}\theta^5 - 5.616e^{23}\theta^4 + 4.683e^{18}\theta^3$ 
- 1.915 $e^{13}\theta^2 + 4.076e^{28}\theta + 13.38$ 

 $\theta$ : independent variable PM: dependent variable



$$f = \frac{R_2}{R_1 + R_2}$$



Fig.3 Relationship between PM with parameter  $\theta$  at feedback factor f = 0.01 condition.

- Research Objective & Background
- Stability Criteria
  - Nyquist Criterion
  - Routh-Hurwitz Criterion
- Relationship between Routh-Hurwitz criterion parameter with phase margin

Ex.1: Two-stage amplifier with C compensation

Ex.2: Two-stage amplifier with C, R compensation

Simulation Verification

208/3/2 iscussion & Conclusion





(a) Transistor level circuit

Fig.4 Two-pole amplifier with compensation of Miller RHP zero

$$R_1 = r_{on} || r_{op} = 111k\Omega$$
 
$$R_2 = r_{op} || R_{ocasn} \approx r_{op} = 333k\Omega$$
 
$$C_1 = C_{dg4} + C_{dg2} + C_{gs7} = 13.6fF$$
 
$$C_{m1} = g_{mn} = 150 \, uA/V$$
 
$$C_2 = C_L + C_{gd8} \approx C_L + 1.56fF = 101.56fF$$
 
$$C_{m2} = g_{mp} = 150 \, uA/V$$
 
$$(C_L = 100fF)$$

### Routh-Hurwitz Method

Closed-loop transfer function:

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{A(s)}{1 + fA(s)} = \frac{A_0(1 + d_1 s)}{1 + fA_0 + (a_1 + fA_0 d_1)s + a_2 s^2 + a_3 s^3}$$



Explicit stability condition of parameters:

$$\alpha = a_1 + fA_0d_1$$

$$= R_1C_1 + R_2C_2 + (R_1 + R_2 + R_r)C_r + (G_{m2} - fG_{m1} + fG_{m1}G_{m2}R_r)R_1R_2C_r > 0$$

$$\beta = \frac{(a_1 + fA_0d_1)a_2 - a_3(1 + fA_0)}{a_2} > 0$$

(parameter of Routh stable) Routh table

|                |                                                                                  |                                                                                  |                | _              |   |
|----------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------|----------------|---|
| $S^n$          | $\alpha_n$                                                                       | $\alpha_{n-2}$                                                                   | $\alpha_{n-4}$ | $\alpha_{n-6}$ |   |
| $S^{n-1}$      | $\alpha_{n-1}$                                                                   | $\alpha_{n-3}$                                                                   | $\alpha_{n-5}$ | $\alpha_{n-7}$ | : |
| $S^{n-2}$      | $\beta_1 = \frac{\alpha_{n-1}\alpha_{n-2} - \alpha_n\alpha_{n-3}}{\alpha_{n-1}}$ | $\beta_2 = \frac{\alpha_{n-1}\alpha_{n-4} - \alpha_n\alpha_{n-5}}{\alpha_{n-1}}$ | $eta_3$        | $eta_4$        |   |
| $S^{n-3}$      | $\gamma_1 = \frac{\beta_1 \alpha_{n-3} - \alpha_{n-1} \beta_2}{\beta_1}$         | $\gamma_2 = \frac{\beta_1 \alpha_{n-5} - \alpha_{n-1} \beta_3}{\beta_1}$         | γ <sub>3</sub> | $\gamma_4$     |   |
| :              | i                                                                                | ;                                                                                | :              | :              | : |
| S <sup>0</sup> | $\alpha_0$                                                                       |                                                                                  |                |                |   |

 $\alpha, \beta$ : time dimension parameters

Relationship:  $\alpha$ ,  $\beta$  and phase margin



Interpolation by MATLAB

### Data collection

$$C_{r1} \begin{cases} R_{r11} & (\alpha_{11}, \beta_{11}) \\ R_{r12} & (\alpha_{12}, \beta_{12}) \\ R_{r13} & (\alpha_{13}, \beta_{13}) \\ \dots & \dots \\ R_{r19} & (\alpha_{19}, \beta_{19}) \end{cases}$$

$$C_{r2} \begin{cases} R_{r21} & (\alpha_{21}, \beta_{21}) \\ R_{r22} & (\alpha_{22}, \beta_{22}) \\ R_{r23} & (\alpha_{23}, \beta_{23}) \\ \dots & \dots \\ R_{r29} & (\alpha_{29}, \beta_{29}) \end{cases}$$

$$C_{r3} \begin{cases} R_{r31} & (\alpha_{31}, \beta_{31}) \\ R_{r32} & (\alpha_{32}, \beta_{32}) \\ R_{r33} & (\alpha_{33}, \beta_{33}) \\ \dots & \dots \\ R_{r39} & (\alpha_{39}, \beta_{39}) \end{cases}$$

$$C_{r9} = \begin{bmatrix} R_{r91} & (\alpha_{91}, \beta_{91}) \\ R_{r92} & (\alpha_{92}, \beta_{92}) \\ R_{r93} & (\alpha_{93}, \beta_{93}) \\ \dots & \dots \\ R_{r99} & (\alpha_{99}, \beta_{99}) \end{bmatrix}$$

# Interpolation by MATLAB



Fig.5 Relationship between PM with parameter  $\alpha_1$ ,  $\beta_1$  at feedback factor f = 0.01 condition.

- Monotonic relationship
- Following with the increase of parameter's value
- the phase margin will be increased feedback system will be more stable

- Research Objective & Background
- Stability Criteria
  - Nyquist Criterion
  - Routh-Hurwitz Criterion
- Relationship between Routh-Hurwitz criterion parameter with phase margin
- Simulation Verification

Discussion & Conclusion

# **Verification Circuit**



(a) Transistor level circuit

Fig.6 Two-pole amplifier with inter-stage capacitance



$$R_1 = r_{on} || r_{op} = 111k\Omega$$
  
 $R_2 = r_{op} || R_{ocasn} \approx r_{op} = 333k\Omega$   
 $G_{m1} = g_{mn} = 150 \, uA/V$   
 $G_{m2} = g_{mp} = 150 \, uA/V$   
 $C_1 = C_{dg4} + C_{dg2} + C_{gs7} = 13.6 fF$   
 $C_2 = C_L + C_{gd8} \approx C_L + 1.56 fF = 101.56 fF$   
 $(C_L = 100 fF)$ 

# Routh-Hurwitz method

Closed-loop transfer function:

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{A(s)}{1 + fA(s)} = \frac{A_0(1 + b_1 s)}{1 + fA_0 + (a_1 + fA_0 b_1)s + a_2 s^2}$$



Explicit stability condition of parameters:

$$\begin{aligned} \theta &= a_1 + fA_0b_1 \\ &= R_1C_1 + R_2C_2 + (R_1 + R_2)C_{r1} + (G_{m2} - fG_{m1})R_1R_2C_{r1} > 0 \end{aligned}$$

Relationship:  $C_{r_1}$  and phase margin



Data fitting

# Data Fitting by MATLAB



Fig.7 Relationship between PM with compensation capacitor  $C_{r1}$  at variation feedback factor f conditions.

# PM VS $C_{r1}$

f = 0.01 condition

#### Relation function:

$$\begin{aligned} \mathsf{PM} &= f_1(C_{r1}) \\ &= -1.026e^{36}C_{r1}^{\ \ 3} + 1.52e^{24}C_{r1}^{\ \ 2} + 4.488e^{12}C_{r1} + 7.247 \end{aligned}$$

 $C_{r1}$ : independent variable

PM: dependent variable



$$f = \frac{R_2}{R_1 + R_2} = 0.01$$

#### 線形モデル Poly3:

 $f(x) = p1*x^3 + p2*x^2 + p3*x + p4$ 

#### 係数 (95% の信頼限界):

p1 = -1.026e+36 (-3.052e+36, 9.994e+35)

p2 = 1.52e + 24 (-4.573e + 24, 7.612e + 24)

p3 = 4.488e+12 (-1.415e+12, 1.039e+13)

p4 = 7.247 (5.412, 9.083)

#### 適合度:

SSE: 0.004426 決定係数: 0.9996

自由度調整済み決定係数: 0.9994

RMSE: 0.02975



# $C_{r1}$ VS PM

f = 0.01 condition

#### Relation function:

$$C_{r1} = f_1(PM)$$
  
=  $6.343e^{-15}PM^3 - 2.091e^{-13}PM^2 + 2.493e^{-12}PM - 9.822e^{-12}$ 

 $C_{r1}$ : dependent variable

PM: independent variable



$$f = \frac{R_2}{R_1 + R_2} = 0.01$$

#### 線形モデル Poly3:

 $f(x) = p1*x^3 + p2*x^2 + p3*x + p4$ 

係数 (95% の信頼限界):

p1 = 6.343e-15 (8.692e-16, 1.182e-14)

p2 = -2.091e-13 (-4.059e-13, -1.223e-14)

p3 = 2.493e-12 (1.435e-13, 4.843e-12)

p4 = -9.822e-12 (-1.913e-11, -5.162e-13)

#### 適合度:

SSE: 2.085e-28 決定係数: 0.9997

自由度調整済み決定係数: 0.9994

RMSE: 6.457e-15



For stable feedback system, necessary PM value: 45 degree or 60 degree

$$C_{r1} = f_1(PM)$$
=  $6.343e^{-15}PM^3 - 2.091e^{-13}PM^2 + 2.493e^{-12}PM - 9.822e^{-12}$ 

PM=45degree,  $C_{r1} = 2.5694e^{-10}F = 0.25694nF$ 

PM=60degree,  $C_{r1} = 7.5709e^{-10}F = 0.75709nF$ 



For stability and needed PM value, compensation capacitance can be calculated.

# Simulation by LTspice





compensation capacitor:

$$C_{r1} = 0.25694nF$$

feedback factor:

$$f = \frac{0.1k}{9.9k} = 0.01$$

# Simulation result



phase: v(vout)=(-4.66844e-005dB,-133.013°) at 301437

*Phase Margin* = 
$$180^{\circ} - 133^{\circ} = 47^{\circ}$$

- Research Objective & Background
- Stability Criteria
  - Nyquist Criterion
  - Routh-Hurwitz Criterion
- Relationship between Routh-Hurwitz criterion parameter with phase margin
- Simulation Verification

Discussion & Conclusion

# Discussion



Especially effective for

Multi-stage opamp (high-order system)

Limitation

Explicit transfer function with polynomials of *s* has to be derived.

# Conclusion

- R-H method, explicit circuit parameter conditions can be obtained for feedback stability.
- Relationship between R-H criterion parameter with phase margin:
  - (1) monotonic relationship
  - (2) the system will be more stable, following with the increase of parameter's value.
- The proposed method has been confirmed with LTspice simulation



R-H method can be used with conventional Bode plot method.

# Thank you for your kind attention.

# Q&A

Q: Bode plot often be used for judging stability, you propose use Routh-Hurwitz method. what' the difference between two methods.

A: Traditional method, Bode plot often be used, it can show stability information directly. From Bode plot, we can only find out the stability, judge the system stable or unstable. But we don't know internal connection between circuit parameters and stability. we don't know which parameter values influence the stability, capacitor, resistor.

Used the proposed method, we can obtain explicit stability condition for circuit parameters, and we can find out the that between R-H criterion parameter with phase margin is Monotonic relationship.

At our previous research, we have verified the equivalence that between R-H criterion with Nyquist criterion