

微小信号測定用SAR ADCでの 冗長性度合いの検討

新井宏崇 荒船拓也 澁谷将平 小林佑太朗 浅見幸司 小林春夫

群馬大学大学院 理工学府 電子情報・数理教育プログラム 小林研究室 博士前期課程1年 新井 宏崇

- ・ はじめに
- SAR ADCと冗長設計
- フィボナッチ数列を用いた冗長設計
- フィボナッチ数列重み付けSAR ADCの新知見
- まとめ

- ・ はじめに
- SAR ADCと冗長設計
- フィボナッチ数列を用いた冗長設計
- ・フィボナッチ数列重み付けSAR ADCの新知見
- まとめ

研究背景

逐次比較近似AD変換器(SAR ADC)使用 微小電流源の測定

微小電流源測定の問題点

SAR ADC使用を考える

導き出した解決策

• はじめに

- ・ SAR ADCと冗長設計 – SAR ADC
 - 冗長性を有するSAR ADC
- フィボナッチ数列を用いた冗長設計
- ・フィボナッチ数列重み付けSAR ADCの新知見
- まとめ

逐次比較近似AD変換器(SAR ADC)

SAR: Successive Approximation Register

	St	ер	1st	2nd	3rd	4th	5th	
5bit-5step SAR ADC	Weigh	tp(k)	16	8	4	2	1	outpu
		31						31
\land Appled Input 7.2 [\/]		30						30
Analog Input: 7.3 [V]		29						29
		28						28
Binary weight :		27						27
		26						26
16, 8, 4, 2, 1		25						25
0		24						24
		23						23
Real		22						22
		21						21
		20						20
		19						19
		18						18
							 	
	Level	10						10
		10						
		14						14
		10						10
		11						11
		10						10
		<u> </u>						<u> </u>
		8						8
		7		_				7
		<i>,</i> 6						6
		5						5
		4						4
		3						3
		2						2
		1						1
		0						0

5bit-5step SAR ADC

Analog Input: 7.3 [V] Binary weight :

St	ер	1st	2nd	3rd	4th	5th	tt
Weigh	t p(k)	16	8	4	2	1	ουτρυτ
	31						31
	30						30
	29						29
	28						28
	27						27
	26						26
	25						25
	24						24
	23						23
	22						22
	21						21
	20						20
	19						
	18						18
	17						
	16						16
Levei	15						15
	14						14
	13						13
	12						12
	11						11
	10						10
	9						9
	8		Y				8
	7	_					7
	6						6
	5						5
	4						4
	3						3
	2	I n I					2
	1						1
	0				_		0

5bit-5step SAR ADC

Analog Input: 7.3 [V] Binary weight :

St	ер	1st	2nd	3rd	4th	5th	
Weigh	t p(k)	16	8	4	2	1	ουτρυτ
	31						31
	30						30
	29						29
	28						28
	27						27
	26						26
	25						25
	24						24
	23						23
	22						22
	21						21
	20						20
	19						19
	18						18
	17						17
1	16						16
Levei	15						15
	14						14
	13						13
	12						12
	11						11
	10				DI		10
	9						9
	8		V				8
	7						7
	6						6
	5				1		5
	4						4
	3						3
	2	1 n 1	1 n 1	1 1 1			2
	1		1 V [1 📕 🗋			1
	0	r/-		۲ ۰۰۰۰۰ ۲			0

5bit-5step SAR ADC

Analog Input: 7.3 [V]
Binary weight :

7.3
$$\Rightarrow$$
00111 \Rightarrow 7
 \checkmark / \checkmark
16 $=$ 8 $=$ 4 $+$ 2 $+$ 1 $+$ 0.5 $-$ 0.5 $=$ 7

St	ер	1st	2nd	3rd	4th	5th	output
Weigh	t p(k)	16	8	4	2	1	ουτρυτ
	31						31
	30						30
	29						29
	28						28
	27						27
	26						26
	25						25
	24						24
	23						23
	22						22
	21						21
	20						20
	19						19
	18						18
	17						17
aval	16						16
_evel	15						15
	14						14
	13						13
	12						12
	11						11
	10						10
	9						9
	8		V				8
	7		_				
	6					7	6
	5				7		5
	4						4
	3						3
	2	l) ∩ []	[] 🔼 []	[] 1 []	1 [] 1 [2
	1] 🗸 [] 🗸 [[] 📕 []	[╹ ╹ 「		1
	0	۰ ۱	F				0

• はじめに

- SAR ADCと冗長設計 – SAR ADC
 - 冗長性を有するSAR ADC
- フィボナッチ数列を用いた冗長設計
- ・フィボナッチ数列重み付けSAR ADCの新知見
- まとめ

冗長性と誤差補正

Radix = 基数

※q(k):k ステップ目の補正可能範囲

正常動作

冗長性なし

コンパレータの誤判定

冗長設計による判定補正

冗長探索SAR ADCの特長

前半の比較条件を緩和し、速度の上昇後半の比較条件を強化し、誤判定を補正

二進探索(完全整定)		5bit逐次比較方式ADC				
Step1	Step2	Step3	Step4	step5		

測定時間

各ステップが短縮され、全体の測定時間が短縮

- ・ はじめに
- SAR ADCと冗長設計
- フィボナッチ数列を用いた冗長設計
- ・フィボナッチ数列重み付けSAR ADCの新知見
- まとめ

フィボナッチ数列とは?

フィボナッチ数列

$$F_0 = 0$$

 $F_1 = 1$
 $F_{n+2} = F_n + F_{n+1}$

Leonardo Fibonacci (伊:1170~1250年頃)

初項から計算していくと...

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233...

隣り合う2項の比率を考えると...

$$\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1.618033988749895 = \varphi$$

フィボナッチ数列重み付けSAR ADC

- ・ はじめに
- SAR ADCと冗長設計
- フィボナッチ数列を用いた冗長設計
- フィボナッチ数列重み付けSAR ADCの新知見
 フィボナッチ・バイナリ比較シミュレーション
 Radix手法を用いたシミュレーション
- まとめ

証明内容

Sample & Hold回路の整定時間を考慮

シミュレーション条件(1/2)

- 入力信号:微少電流源⇒電圧源(テブナンの等価回路)
- ・S&H回路の整定時間を考慮

シミュレーション条件(2/2)

シミュレーション方法(2/2)

バイナリorフィボナッチクロック

シミュレーション結果

ビット数を変化させたときの測定時間

- はじめに
- SAR ADCと冗長設計
- フィボナッチ数列を用いた冗長設計
- フィボナッチ数列重み付けSAR ADCの新知見
 フィボナッチ・バイナリ比較シミュレーション

- Radix手法を用いたシミュレーション

まとめ

シミュレーション条件

- 入力信号: 電流源⇒電圧源
- S&H回路の整定時間を考慮

```
scilabによるシミュレーション
Radix :1.1~1.9
分解能:5bit
精度 :\frac{1}{2}LSB
キャパシタ初期電圧:フルスケールの半分
```


シミュレーション方法(1/2)

ワーストケースをステップ数で分割しクロック生成

シミュレーション方法(2/2)

Radix=1.1~1.9

シミュレーション結果

- はじめに
- SAR ADCと冗長設計
- フィボナッチ数列を用いた冗長設計
- ・フィボナッチ数列重み付けSAR ADCの新知見
- まとめ

まとめ

Q&A

• 神奈川工科大学 小室先生

- 電流源が微小である理由は
 - •入力が微小電流源以外の場合はDACの不完全整定の影響が大きく、微小電流源の場合はSample & Hold回路の整定時間が大きく影響する。
- 羽賀先生
 - フィボナッチ数列重み付けSAR ADCで誤差補正できない範囲は
 - 最後の2ステップで誤判定が起こった場合や誤差補正範囲以上のノイズ が乗ってしまった場合が誤差補正できない
- 弓仲先生
 - フィボナッチ数列を用いるとなぜよくなるか
 - ・ $\lim_{n\to\infty} \frac{F_n}{F_{n-1}} = \varphi$ となり、黄金比は単峰関数の極値探索に有用であるから