低スイッチング損失かつ低特性オン抵抗のスケーラブル 20-40 V LDMOS トランジスタ

小島 潤也* 松田 順一 築地 伸和 神山 雅貴 小林 春夫(群馬大学)

キーワード:横方向二重拡散MOS,スイッチング損失,安全動作領域,信頼性,ホットキャリア,電流増大 (LDMOS, Switching Loss, SOA, Reliability, Hot Carrier, Current Expansion)

1. はじめに

LDMOS (Lateral Double Diffused MOS) トランジスタ はスイッチング電源の素子として民生用だけではなく、車 載用にも広く用いられている。 車載用には、一層の広 SOA (Safe Operating Area) 及び高信頼性が要求される。広 SOA を得るには、高ゲート電圧及び高ドレイン電圧で発生する ドレイン電流増大 (Current Expansion: CE)⁽¹⁾ を抑える必 要がある。高信頼性を得るには、ドレイン側のゲート端近傍 で発生するインパクトイオン化を抑えてホットキャリア耐 性を上げる必要がある。これらに対応するため、我々は0.35 um CMOS デュアル RESURF 30-50 V LDMOS トランジス タを提案した(2)(3)。また、低消費電力化してデバイスの発熱 を抑制するために低特性オン抵抗及び低スイッチング損失 も求められる。これらに対応するため、我々は前記 LDMOS トランジスタのフィールド・プレートを接地し、ゲート長を 短縮した構造の 0.18 µm CMOS デュアル RESURF 40 V LDMOS トランジスタを提案した⁽⁴⁾⁽⁵⁾。しかしながら、実際 の車載用のスイッチング電源を含む回路では、用途に応じ て、例えば1チップ上で40V動作のみではなく、20-40V の複数の電圧で動作する LDMOS トランジスタを必要とす る場合がある。

本論文では、これに対応するため、我々が提案した前記 40 V LDMOS トランジスタのドリフト領域を比例縮小し、 20-40 V で動作する LDMOS トランジスタ特性をシミュレ ーションで確認した。次節で、従来型と提案型 LDMOS ト ランジスタ構造、及びドリフト領域の比例縮小の方法を説 明する。次に、20 V 動作の LDMOS トランジスタは CE を 抑えて十分な SOA を確保できており、特性オン抵抗-耐圧 の特性は先端レベルにあることを示す。

2. 従来型と提案型 LDMOS トランジスタ

〈2·1〉 従来型 LDMOS トランジスタ

0.35 µm CMOS プロセスをベースにした従来型 LDMOS トランジスタの断面構造を図 1(a)に示す⁽²⁾⁽³⁾。ドリフト領域 は、二つの p 型埋め込み層 (PBL1 と PBL2) で囲まれたデ ュアル RESURF 構造になっている。PBL1 はゲート側ドリ フト端周りの RESURF を強化しており、その領域の電界を ー層弱める効果がある。PBL2 はドリフト領域全体の RESURF に有効に寄与する。PBL2 がドレイン領域下部で 除去してあるのは、ドレインー基板 (ソース)間ブレークダ ウンの低下を防ぐためである。ドリフト領域は、二つの n型 層 (深い NDL1 と浅い NDL2) からなっており、NDL2 が ドリフト表面層の不純物濃度を高めるため、CEを抑えて広 SOA 化する⁽⁶⁾。フィールド・プレート (Field Plate: FP) は RESURF を補助するが、ゲートに接続されており、ミラー 容量を大きくし、スイッチング損失を増大させている。

〈2·2〉 提案型 LDMOS トランジスタ

提案型 LDMOS トランジスタでは、0.18 µm CMOS プロ セスをベースにして従来型を改善した⁽⁴⁾⁽⁵⁾。その断面構造を 図 1(b)に示す。提案型の x 方向(ソースードレイン方向) セ ルピッチは従来型よりチャネル長分(0.17 µm)だけ縮ま り、3.555 µm である。ドリフト領域の長さは 2.650µm、ゲ ート端からの FP の長さは 1.625 µm であり、それらはそれ ぞれ従来型と同じ長さである。提案型では、ミラー容量を低 減するため、FP を接地した GFP (Grounded Field Plate) 構造を採用した。GFP 構造では、オン時にドリフト領域に 誘起される電子密度が従来の FP 構造に比べて低下し、オン 抵抗が増大する。したがって、この増大を抑え、むしろ低減 させるためにゲート端周りを除いた浅いドリフト領域に三 つ目の n 型層 (NDL3)を導入した。NDL3 は CE 抑制にも 有効である。

図1 従来型と提案型 LDMOS トランジスタの断面図

Fig. 1. Cross sectional views of the conventional and the proposed LDMOS transistors.

提案型 LDMOS トランジスタをスケーラブルにする場合、ドリフト領域の長さを 50%まで短縮した。このとき、 PBL1、PBL2、FP の各長さはドリフト領域の長さの短縮率 と同じ(比例縮小)にしてあるが、NDL3の層は短縮していない。

〈2·3〉 シミュレーション

アドバンスソフト社の 3 次元デバイス・シミュレータ Advance/DESSERT (サンプル版)⁽⁷⁾を用いて、デバイス幅を 全て 0.3µm とした実質 2 次元構造でシミュレーションを行 った。不純物濃度プロファイルの形成は関数入力による。

3. シミュレーション結果

〈3·1〉IDS-VDS 特性

図 2(a)に提案型 LDMOS トランジスタのドレイン電流 Ins-ドレイン電圧 V_{DS} 特性、また図 2(b)にそのトランジス タのドリフト長を 50%比例縮小したそれを示す。CE 領域を 除く SOA の境界は、ドリフト長を縮小しない場合、ゲート 電圧 V_{GS} の最大定格値(4 V)で、V_{DS} = 40 Vになってお り、ドレインの動作電圧 40 Vに対し余裕がある。また、ド リフト長を 50%比例縮小した場合の SOA の境界は、同じ V_{GS} の最大定格値で、V_{DS}=22V になっており、ドレインの 動作電圧 20V に対し余裕がある。

(a) Drift Length: No Reduction (One Cell: 3.555μm × 0.3μm)

(b) Drift Length: 50% Reduction (One Cell: $2.23 \mu m \times 0.3 \mu m)$

図2 提案型 LDMOS トランジスタの I_{DS}-V_{DS} 特性 Fig. 2 I_{DS}-V_{DS} characteristics of the proposed LDMOS transistor.

〈3·2〉Ibs-Vgs特性

図 3(a)に提案型 LDMOS トランジスタの IDs-VGs 特性、 また図 3(b)にそのトランジスタのドリフト長を 50%比例縮 小したそれを示す。ドリフト長を縮小しない場合のしきい 値電圧 Vt は、1.026 V (at IDs = 0.1 μ A and VDs = 0.1 V)、 0.922 V (at IDs = 0.1 μ A and VDs = 40 V)であり、ドリフト 長を 50%比例縮小した場合の Vt は、1.023 V (at IDs = 0.1 μ A and VDs = 0.1 V)、0.923 V (at IDs = 0.1 μ A and VDs = 20 V)である。これから、VDs = 0.1 V からそれぞれの前記ドレ イン動作電圧を印加した場合のしきい値電圧のシフト量は ドリフト長を縮小しない場合と 50%縮小した場合とでほぼ 同じであり、どちらもリーク電流が低く抑えられているこ とが分かる。

(b) Drift Length: 50% Reduction (One Cell: $2.23\mu m \times 0.3\mu m$)

図 3 提案型 LDMOS トランジスタの Ins-VGs 特性 Fig. 3. Ins-VGs characteristics of the proposed LDMOS transistor.

図 4 提案型 LDMOS トランジスタのブレークダウン特性 Fig. 4. Breakdown characteristics of the proposed LDMOS transistor.

〈3·3〉ブレークダウン特性

図4に提案型 LDMOS トランジスタのブレークダウン特 性を示す。ドリフト長を 50%縮小してもブレークダウン電 圧 BV_{DS}は40 V あり、動作電圧20 V に対し十分な余裕が ある。

図5に提案型 LDMOS トランジスタのブレークダウン時 における電界強度分布を示す。ドリフト長を 50%縮小して も電界強度の高い領域即ちブレークダウン箇所は、半導体 の表面ではなく内部にある。これは、ブレークダウンが発生 した場合、ゲート酸化膜及び半導体表面への損傷を抑える ことができることを意味し、ドリフト長を縮小しない場合 と同様に ESD (Electro Static Discharge)に対し耐性がある ものと推定する。

(a) Drift Length: No Reduction

(b) Drift Length: 50% Reduction

図 5 提案型 LDMOS トランジスタのブレークダウン時 の電界強度分布

Fig. 5. Distribution of the electric field magnitude of the proposed LDMOS transistor.

〈3・4〉特性オン抵抗対ブレークダウン電圧特性

図 6 に特性オン抵抗対ブレークダウン電圧特性を示す。 提案型 LDMOS トランジスタのこの特性は、ドリフト長が 縮小するに伴い、ほぼ直線的に低下しおり、特性オン抵抗 RonA (at V_{GS} = 3.3 V, V_{DS} = 0.6 V) は、ドリフト長を縮小 していない場合、40.9 m Ω ·mm² (at BV_{DS} = 62 V)、ドリフ ト長を 50%縮小した場合、18.4 m Ω ·mm² (at BV_{DS} = 40 V) を得ている。この特性は、最近発表されたルネサスセミコン ダクタマニュファクチャリング社のデータ(信頼性に注目 した特性)⁽⁸⁾より低く、UMC 社のデータ⁽⁰⁾と同等であり、 先端レベルにあると考える。

図 6 特性オン抵抗対ブレークダウン電圧特性 Fig. 6. Characteristics of specific on-resistance vs.

breakdown voltage.

〈3・5〉ホットキャリア耐性

図7に提案型 LDMOS トランジスタの P-Body 電流 IPB と基板電流 IsuB の和(正孔電流)のゲート電圧依存性を示 す。この正孔電流は、主にドレイン側ゲート端近傍のインパ クトイオン化によって発生したものである(図8参照)。ド リフト長を 50%縮小したものの正孔電流は、縮小しないも のに対して、より低くなっており、ホットキャリアによる特 性変動は、ドリフト長を 50%縮小した方で同等もしくは小 さくなるものと推定する。ドリフト長を縮小しない提案型 LDMOS トランジスタで高ホットキャリア耐性が得るもの と推定されている⁽⁴⁾ため、それを 50%縮小した方でも同様 に高ホットキャリア耐性を得るものと考える。

図 7 提案型 LDMOS トランジスタの P-Body 電流と基板
電流の和(正孔電流)のゲート電圧依存性

Fig. 7. Gate voltage dependence of the sum of P-body and substrate currents for the proposed LDMOS transistor.

(a) Drift Length: No Reduction

(b) Drift Length: 50% Reduction

図8 提案型 LDMOS トランジスタの正孔電流密度分布 Fig. 8. Hole current density distribution of the proposed LDMOS transistor.

4. まとめ

車載用に提案した低スイッチング損失かつ低特性オン抵 抗を持つ 40 V 動作の LDMOS トランジスタのドリフト領 域を比例縮小し、その特性をシミュレーションで確認した。 ドリフト領域を 50%縮小した 20 V 動作の LDMOS トラン ジスタでは、ゲートの最大定格電圧範囲内で CE は発生せ ず、広 SOA が得られた。特性オン抵抗対ブレークダウン電 圧特性は先端レベルにあり、高ホットキャリア耐性が得ら れるものと推定する。また、本方法により、製造プロセスコ ストを上げることなく、車載用に 20-40 V の複数の電圧で 動作する LDMOS トランジスタを1 チップ上に作製でき、 回路設計の自由度が上がる。

謝辞

本研究で用いたデバイス・シミュレータは、アドバンスソフト社から借用させて頂いているものであり、アドバンスソフト社に深謝申し上げる。なお、このシミュレータは、国立研究開発法人科学技術振興機構の助成を受けて(A-STEP プログラム)アドバンスソフト社で開発されたものである。

文 献

- (1) S. Poli, S. Reggiani, R. K. Sharma, M. Denison, E. Gnani, A. Gnudi, and G. Baccarani : "Optimization and Analysis of the Dual n/p-LDMOS Device", IEEE Trans. Electron Devices, Vol. 59, No. 3, pp. 745-753 (2012).
- (2) 松田順一,神山雅貴,築地伸和,小林春夫:「高信頼性 Nch-LDMOS の提案」,電気学会研究会資料,電子デバイス 半導体電力変換 合同 研究会, EDD-15-066, SPC-15-148, pp. 11-16 (2015).
- (3) J. Kojima J. Matsuda, M. Kamiyama, N. Tsukiji, and H. Kobayashi : "Optimization and Analysis of High Reliability 30-50V Dual RESURF LDMOS", in Proc. ICSICT, Hangzhou, China, S25-3 (2016).
- (4) 松田順一,小島潤也,築地伸和,神山雅貴,小林春夫:「低スイッチン グ損失、広 SOA かつ低特性オン抵抗の 40V LDMOS トランジスタ」, 電気学会研究会資料,電子デバイス 半導体電力変換 合同研究会, EDD-17-082, SPC-17-181 (2017).
- (5) Jun-ichi Matsuda, Jun-ya Kojima, Nobukazu Tsukiji, Masataka Kamiyama, Haruo Kobayashi : "A Low Switching Loss 40 V Dual RESURF LDMOS Transistor with Low Specific On-Resistance", International Conference on Mechanical, Electrical and Medical Intelligent System, Kiryu Japan (2017).
- (6) P. L. Hower, J. Lin, and S. Merchant : "Snapback and Safe Operating Area of LDMOS Transistors", Technical Digest of International Electron Devices Meeting, IEDM'99, pp. 193–196 (1999).
- (7)山口憲,原田昌紀,桑原匠史,大倉康幸:「デバイスシミュレーション」,アドバンスシミュレーション(アドバンスソフト株式会社), Vol. 21, pp. 39-69 (2015).
- (8) H. Fujii, S. Tokumitsu, T. Mori, T. Yamashita, T. Maruyama, T. Maruyama, Y. Maruyama, S. Nishimoto, H. Arie, S. Kubo and T. Ipposhi "A 90nm Bulk BiCDMOS Platform Technology with 15-80V LD-MOSFETs for Automotive Applications", 29th International Symposium on International Power Semiconductor Devices & IC's (ISPSD), pp.73–76 (2017).
- (9) H.-L. Liu, Z.-W. Jhou, S.-T. Huang, S.-W. Lin, K.-F. Lin, C.-T. Lee, and C.-C. Wang : "A Novel High-Voltage LDMOS with Shielding Contact Structure for HCI SOA Enhancement", 29th International Symposium on International Power Semiconductor Devices & IC's (ISPSD), pp.311–314 (2017).