Harmonic Suppression Technique of Magnetic Field Coupling Type Wireless Power Transmission System Using ATAC Circuit

Tomonori Yanagida, Kosuke Machida, Koji Asami, Yuki Endo, Haruo Kobayashi

Advantest Corporation
Gunma University
Research Objectives

Objective

Magnetic field coupling type wireless power transmission system
- Resonance frequency matching
- Magnetic field harmonic suppression

Approach

ATAC & harmonic suppression switching pattern

ATAC: Automatic Tuning Assist Circuit
Outline

• Research Background
• ATAC Circuit
• Harmonic Suppression Pattern
• Simulation
• Conclusion
Outline

• Research Background
 • ATAC Circuit
 • Harmonic Suppression Pattern
 • Simulation
 • Conclusion
Wireless Power Transmission

Wireless power transmission

Electric car & mobile electronics etc.

Method & Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Electromagnetic induction</th>
<th>Magnetic field coupling</th>
<th>Electric field resonance</th>
<th>Radio wave</th>
<th>Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission medium</td>
<td>Magnetic field</td>
<td>Magnetic field</td>
<td>Electric field</td>
<td>Micro wave</td>
<td>Light</td>
</tr>
<tr>
<td>distance</td>
<td>2-3 [cm]</td>
<td>2-3 [m]</td>
<td>2-3 [mm]</td>
<td>2-3 [m]~</td>
<td>2-3 [m]~</td>
</tr>
<tr>
<td>Degree freedom</td>
<td>Fixed</td>
<td>3 dimensions</td>
<td>plane</td>
<td>3 dimensions</td>
<td>3 dimensions</td>
</tr>
<tr>
<td>Distance freedom</td>
<td>impossible</td>
<td>possible</td>
<td>possible</td>
<td>possible</td>
<td>possible</td>
</tr>
<tr>
<td>efficiency</td>
<td>~90%</td>
<td>~90%</td>
<td>~90%</td>
<td>~40%</td>
<td>~30%</td>
</tr>
</tbody>
</table>

Magnetic field coupling has good potential
Magnetic Field Coupling Problem

Problem

- High Q value, and L & C with low resistance
- High precision resonance frequency adjustment
 - Power supply & transmitter, transceiver
- Class D amplifier configuration
 - harmonic distortion generation

Proposed Method

Automatic adjustment of resonance frequency
Magnetic field harmonics suppression system
Outline

• Research Background
• **ATAC Circuit**
• Harmonic Suppression Pattern
• Simulation
• Conclusion
Equivalent Circuit of Magnetic Field Coupling

\[Q_{TX} = \frac{\omega_o L_{TX}}{R_{TX}}, \quad Q_{RX} = \frac{\omega_o L_{RX}}{R_{RX}} \]

Power supply efficiency \[\eta = \frac{1}{\left(\kappa^2 Q_{TX} Q_{RX} \left(\frac{R_L}{R_{RX}} + 1 \right) + 1 \right) \left(1 + \frac{R_{RX}}{R_L} \right)} \]
Proposed Circuit: ATAC

ATAC (Automatic Tuning Assist Circuit)

Automatic correction of phase shift between current & voltage

Main power supply & ATAC section shift switching phase by 90°
ATAC Principle

Main power supply

\[\begin{align*}
V_S & \quad \text{Phase: 90[Deg]} \\
\end{align*} \]

Auxiliary power supply having phase 90\(^\circ\)

\[\begin{align*}
V_A & \quad \text{Phase: 90[Deg]} \\
\end{align*} \]

Add together

\[\begin{align*}
V_S & \quad V_A \\
\text{Phase: 90[Deg]} \\
\end{align*} \]
Conventional Circuit

Error of resonance frequency 0.80%~3.78%
Error of output current 60%~80%
ATAC Circuit

Error of resonance frequency 0.80%~3.78%
Error of output current 0%~20%
Outline

• Research Background
• ATAC Circuit
• Harmonic Suppression Pattern
• Simulation
• Conclusion
Harmonic Suppression Switching Pattern

Harmonic Suppression Algorithm

Switching output pattern

Harmonic suppression

Duty50%

Fourier transformation

Harmonic Distortion

\[f(t) = \sum_{k=1}^{\infty} \frac{1}{k\pi} \sin(2kf\pi t) \quad (k = 1, 3, 5, \ldots) \]
Harmonic Suppression Switching Pattern

\[f(t) - f(t - \tau) - f(t + \tau) = \sum_{k=1}^{\infty} \frac{1}{k\pi} \{1 - 2\cos(2kf_{in}\pi\tau)\} \sin(2kf_{in}\pi t) \]

In case HD3 suppression \(f_{in}\tau = \frac{1}{18} \)

Specific frequency suppression switching pattern

Time waveform

Spectrum
Outline

• Research Background
• ATAC Circuit
• Harmonic Distortion pattern
• Simulation
• Conclusion
Apply HD3 Suppression Pattern

Objective

- Harmonics suppression
- Operation of ATAC not Duty 50%
Spectrum of Inductor Current

Duty 50% switching

HD3 suppression switching

-20dB suppression
Output Current of HD3 Suppression

Error of resonance frequency 0.80%~3.78%
Error of output current 0%~20%
Outline

• Research Background
• ATAC Circuit
• Harmonic Distortion pattern
• Simulation
• Conclusion
Conclusion

- Wireless power supply system

 Automatically adjust resonance frequency

- ATAC circuit can operate without duty 50% switching.

- Harmonic suppression pattern switching

 HD3 suppression