

Numerical Simulation for Optimization of Unsteady Rotating Wind Turbine

Xueyan Bai, Anna Kuwana, Haruo Kobayashi

Division of Electronics and Informatics, Faculty of Engineering and Science, Gunma University, Japan

Research Background

Research Objective

Types of Wind Turbines

Vertical-Axis Wind Turbine

• Problem

• Horizontal axis

Large three-bladed

 Equation of motion for wind turbines $I\frac{\partial\omega}{\partial t} = N - B$

shaft to receive from a bearing (Proportional to angular velocity ω)

Calculation Method

Fundamental Equations of Fluid

Calculation Algorithm

 Fractional step method 						
$U^{*} = U^{n} + \Delta t \left\{ -U^{n} \frac{\partial U^{n}}{\partial X} - V^{n} \frac{\partial U^{n}}{\partial Y} - W^{n} \frac{\partial U^{n}}{\partial Z} + \omega^{2} X - 2\omega V + \frac{1}{\operatorname{Re}} \left(\frac{\partial^{2} U^{n}}{\partial X^{2}} + \frac{\partial^{2} U^{n}}{\partial Y^{2}} + \frac{\partial^{2} U^{n}}{\partial Z^{2}} \right) \right\}$						
$V^* = V^n + \Delta t \left\{ -U^n \frac{\partial V^n}{\partial X} - V^n \frac{\partial V^n}{\partial Y} - W^n \frac{\partial V^n}{\partial Z} + \omega^2 Y + 2\omega U + \frac{1}{\operatorname{Re}} \left(\frac{\partial^2 V^n}{\partial X^2} + \frac{\partial^2 V^n}{\partial Y^2} + \frac{\partial^2 V^n}{\partial Z^2} \right) \right\}$						
$W^* = W^n + \Delta t \left\{ -U^n \frac{\partial W^n}{\partial X} - V^n \frac{\partial W^n}{\partial Y} - W^n \frac{\partial W^n}{\partial Z} + \frac{1}{\text{Re}} \left(\frac{\partial^2 W^n}{\partial X^2} + \frac{\partial^2 W^n}{\partial Y^2} + \frac{\partial^2 W^n}{\partial Z^2} \right) \right\}$						
$\frac{\partial^2 p^{n+1}}{\partial X^2} + \frac{\partial^2 p^{n+1}}{\partial Y^2} + \frac{\partial^2 p^{n+1}}{\partial Z^2} = \frac{1}{\Delta t} \left(\frac{\partial U^*}{\partial X} + \frac{\partial V^*}{\partial Y} + \frac{\partial W^*}{\partial Z} \right)$						
$U^{n+1} = U^* - \Delta t \frac{\partial p^{n+1}}{\partial Y}$						

	∂Y	Re	$\langle \partial X^2 \rangle$	∂Y^2	∂Z^2
∂W		∂W	∂W	∂	Ŵ
∂t	+ U	∂X	$+V \overline{\partial Y}$	$+W{\partial}$	\overline{Z}
	∂p	_ 1	$\partial^2 W$	$\partial^2 W$	$\partial^2 W$
	∂Z	+ Re	$\sqrt{\partial X^2}$	∂Y^2	$+ \overline{\partial Z^2}$

(X, Y, Z): Position component in rotational coordinate system (U, V, W): Velocity component in rotational coordinate system *p*: Pressure *t*: Time ω : Angular velocity of wind turbines Re: Reynolds number based on wind turbine radius and uniform velocity $(=10^5)$

- Finite difference of advection term: Third order upwind difference

$$f\frac{\partial u}{\partial x} \sim f\frac{-u_{i+2} + 8(u_{i+1} - u_{i-1}) + u_{i-2}}{12\Delta x} + \frac{|f|\Delta x^3}{12}\frac{u_{i+2} - 4u_{i+1} + 6u_i - 4u_{i-1} + u_{i-2}}{\Delta x^4}$$

Results and Analysis

- Analysis for Length1 & Length2
- (Thickness=0.2, Overlap=Gap=0.0 are fixed)

• Analysis for Thickness

0

0.1

(Length1=Length2=1.0, Overlap=Gap=1.0 are fixed)

0.15

Thickness

Conclusion

0.2

- Analysis for Overlap & Gap
- (Length1=Length2=1.0, Thickness=0.1 are fixed)

