

Second-order DWA Algorithm and Circuit Design for Multi-bit ΔΣADC/DAC

AMDE2018

6th December

Yuanyang Du, H. Hagiwara, M. Murakami, H. San, A. Kuwana, H. Kobayashi

Division of Electronics and Informatics, Gunma University (t171d602@gunma-u.ac.jp)

Research Objective & Background

Background	Objective	What is DWA ?	
Background ΔΣ ADCs/DACs for IoT applicationsImage: Unit of the second stateImage: Decide state <th>ProblemsManufacturing variation among unit circuits in DACLinearity degradation<math>I + e_0 \bigoplus I + e_1 \bigoplus I + e_2 \bigoplus I + e_7 \bigoplus e0, e1, e7:So \bigcap_{γ}So \bigcap_{γ}</math></th> <th>DWA Techniques Error Correction : No measurement of errors Redundancy usage Time averaging of errors Spectrum shaping of errors</th> <th>Unit Cell Mismatches $\begin{array}{c} \hline \\ \hline \\$</th>	ProblemsManufacturing variation among unit circuits in DACLinearity degradation $I + e_0 \bigoplus I + e_1 \bigoplus I + e_2 \bigoplus I + e_7 \bigoplus e0, e1, e7:So \bigcap_{\gamma}So \bigcap_{\gamma}$	DWA Techniques Error Correction : No measurement of errors Redundancy usage Time averaging of errors Spectrum shaping of errors	Unit Cell Mismatches $ \begin{array}{c} \hline \\ \hline \\$
Multi-bit configuration - Small hardware Good ! - Non-linearity Bad !	Approach Development of DSP algorithm Complicated yet smart, reliable, low-cost	Fs/2	<pre>e15; e14; e13; e12; e11; e10; e9; e8; e7; e6; e5; e4; e3; e2; e1; lout2=4l+[e8+e7+e6+e5] Spectrum shaping by cell selection order</pre>

Proposed 2nd-order DWA Algorithm

2nd-order Noise-Shaping of DAC Nonlinearity

Operation of Proposed Algorithm

Circuit Realization

Simulation Result

Summary

- •A 2nd-order DWA algorithm is proposed • Reduce mismatches with 2nd-order noiseshaping Requires a two clock operation with switched capacitor circuit
- Make the circuit

2nd-order DWA is more effective

But its circuit/operation become complicated

