1. Objective

Demand for better digital-to-analog converter (DAC)

Problem

Manufacturing variations among DAC circuit elements

Purpose of this work

DSP algorithms to suppress the variation effects for binary and ternary DACs

2. Background

δΣ Digital to Analog Converter (Low Pass)

![δΣ Digital to Analog Converter Diagram]

Purpose

- Measurement & audio applications
- Mostly digital circuit
- High-resolution, high-linearity
- DC signal, low frequency signal generation
- Purpose:
 - Improve linearity (High resolution)

3. Introduction to Ternary

8 current sources

- Binary unit cell: 1-bit
- Ternary unit cell: 1.5-bit

Forces

- Binary ⇒ ± and 0 value
- Ternary ⇒ ±, - and 0 value

Reasons for Ternary Usage

- Higher resolution for given current sources
- Smaller number of current sources for given resolution

4. DWA* Algorithm (* Data-Weighted Averaging)

Conventional

- Cell number

 - Unit cell mismatch ⇒ Accumulation

DWA type I

- Cell number

 - Push unit cell mismatch ⇒ Averaging

DWA type II (Back and forth)

- Cell number

SNDR Improvement Algorithms

- **LP**
 - Binary 1
 - Ternary 1

- **HP**
 - Binary 1
 - Ternary 1

- **BP**
 - Binary 2
 - Ternary 2

- **Ternary 4**

New Findings

It is high linearity when DWA type I is used.

5. Binary, Ternary DWA Overview

Segmented DAC with ternary unit cells

- High-pass (HP) δΣ DAC (N=1)
- Band-pass (BP) δΣ DAC (N=2)
- Band-pass (BP) δΣ DAC (N=4)

6. Pointer

1 Pointer

- High-pass (HP) δΣ DAC

2 Pointers

- Band-pass (BP) δΣ DAC (N=2)

4 Pointers

- Band-pass (BP) δΣ DAC (N=4)

7. Conclusion

< δΣ DA modulator >

In case HP, BP δΣ DACs with ternary unit cells, DWA type I with pointers alternately used is effective.

Reference