EMI Noise Reduction for PFC Converter with Improved Efficiency and High Frequency Clock Noriyuki Oiwa, Shotaro Sakurai, Ahmad Bustoni, Shogo Katayama, Yasunori Kobori,

Haruo Kobayash (Gunma University)

t181d011@gunma-u.ac.jp

2.Background **1.Objective** Problem 2 Goal **Problem 1** AC-DC converter improvement EMI noises reduction Conduction noise [t] **1.EMI** noise reduction Radiation noise for regulation Switching Loss \Rightarrow Frequency modulation Decreasing switching loss ge[v] 2.Efficiency improvement ⇒ SiC-SBD 3.Input LPF size reduction Switching Loss \Rightarrow SiC-SBD (high clock frequency) Increasing switching loss Current flow \rightarrow EMI noise generation $\left(\overline{i} \right)$ SBD: Schottky Barrier Diode per unit time **EMI:** Electro-Magnetic Interference SiC: Silicon Carbide

3.Proposed Circuit

Proposal 1

Noise Spectrum Spread

4.Noise Spreading Results

Parameter	Simulation Value
Vin	AC 100V/50Hz
L	2.2 mH
Cout	330 μF
Vout	400V
Fck	100 kHz

• Voltage controlled oscillator usage \rightarrow Linear frequency modulation

Measuring PWM of Fourier transform in SIMPLIS simulator

•Clock frequency change \rightarrow No increase of output ripple Only EMI noise reduction

5.Loss Comparison Results

Conventional Si Power Diode Recovery current generation at turn off Fck increase -- Switching loss increase Recovery current reduction

6.Conclusion

PFC with frequency modulation

Fixed frequency → Frequency modulation

EMI noise reduction by more than 17 dB

Diode recovery current reduction

PN-Di \rightarrow **SiC-SBD** employment

[•] Efficiency improvement

Reference

[1] N. Miki, N. Tukiji, K. Asaishi, Y. Kobori, N. Takai, H. Kobayashi. "EMI Reduction Technique With Noise Spread **Spectrum Using Swept Frequency Modulation for Hysteretic DC-DC Converters**", IEEE International Symposium on **Intelligent Signal Processing and Communication Systems**, Xiamen, China (Nov. 2017)

[2] H. Kobayashi, T. Nabeshima (Editors), Handbook of Power Management Circuits, Pan Stanford Publisher (2016)