

Numerical simulation for characteristic analysis of vertical axis wind turbine

AMDE 2018 6th,December

Dan Yao Anna Kuwana Haruo Kobayashi

Division of Electronics and Informatics, Faculty of Engineering and Science, Gunma University

Purpose of Research & Background

Research Background

Japan's Energy Distribution

Offshore wind power generation is attracting attention as a new energy source in Japan.

[Source] http://www.nedo.go.jp/library/fuuryoku/index.html

[Source] https://www.mugendai-web.jp/archives/933

Scope of This Research

Ford Types of Wind Turbine

Characteristics of VAWT

Advantages of Vertical axis type

Simple construction with low cost

- •Wind acceptance from any direction for the operation
- Low noise and angular velocity in operation
- Reduced wear on moving parts
- Various rotor configuration options
- High static and dynamic moment

Purpose of This Work

The optimum shape of a 2-stage Savonius wind turbine (one of a VAWT) is examined using a simulation technique for fluid phenomena.

Numerical Method

Wind Turbine Calculation Formula

Condition of Simulation

Re: Reynolds number based on wind turbine radius and uniform flow $(= 10^5)$

Simulation Results

Summary

The wind turbine has the highest torque coefficient compared to other wind turbines when ϕ is 30 degrees. When the torque coefficient is negative, the wind turbine can not be start to rotate. The torque coefficients of Stage 1 and Stage 2 are canceled, and the total torque does not become

Comparison of Simulation Results

Reviews, 16 (5) (2012), pp. 3054-3064