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Abstract—This paper describes the optimal waveform 
acquisition condition between the measured waveform repetitive
frequency (fsig) and the sampling clock frequency (fCLK) in an 
equivalent-time sampling system, when the measured waveform 
is periodic. We have obtained that in the case of fCLK / fsig =
1.6180.. or the golden ratio, a waveform missing phenomenon for 
the equivalent-time sampling can be avoided and highly efficient 
waveform acquisition sampling can be realized. We consider that 
this can be explained using the relationship to the golden section 
search algorithm. This paper presents its theoretical 
consideration and simulation results, and we consider that these
results can be utilized in several LSI testing applications such as 
an ADC histogram testing method using a sine wave input and a 
timing measurement circuit design besides the equivalent-time 
sampling system. 
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I. INTRODUCTION

A sampling oscilloscope displays wideband waveforms
with a relatively low frequency sampling clock using an 
equivalent-time sampling technique, when the waveform is 
repetitive [1-4]. This measurement method can be beyond the 
limitation of the Nyquist sampling theorem. However, there is 
an issue of the waveform missing, when the sampling clock 
frequency has some relationships with the waveform repetitive 
frequency. There, it needs a lot of data and hence it takes a long 
time for the whole waveform reconstruction; its waveform 
acquisition is inefficient.

In this paper, we propose a golden ratio sampling for the 
efficient waveform acquisition, which can avoid the waveform
missing phenomenon. Also its relationship with the golden 
section search algorithm is discussed. Then its applications as 
well as its limitation are discussed.

II. EQUIVALENT-TIME SAMPLING TECHNIQUE

Waveform sampling techniques can be classified into the 
real-time sampling and the equivalent-time sampling. The  
equivalent-time sampling techniques are used in a sampling 
oscilloscope for wideband signal measurement with a relatively 
low frequency sampling clock, and they can be classified into 
the sequential sampling and the random sampling [1-4]. We 
consider here the random sampling for a periodic waveform, 
where the sampling clock and the waveform can be incoherent 
or coherent. The sequential sampling can realize a highly 
efficient waveform acquisition but it does not acquire pre-

trigger waveform, while the random sampling can be 
inefficient when the measured waveform repetitive frequency 
and the sampling clock frequency are in some condition.

A. Random Sampling
The random sampling employs an asynchronous sampling

clock for the measured waveform signal, and we consider the 
case that it is periodic and each sampling time from the phase 
zero of the measured waveform is measured and known. Then
after many sampling data acquisitions, a waveform with one 
period can be reconstructed. Fig.1 shows the case that the input 
waveform is a sine wave (but the discussion here is not 
restricted to only the sine wave case).

Fig. 1. Principle of Equivalent-time Sampling.

B. Waveform Missing Phenomena
Fig. 2 shows a typical development of a reconstructed 
waveform for the random sampling in a proper sampling 
condition. However, waveform missing phenomena, which 
require a long time to acquire a whole waveform of one period
in the random sampling system may be caused in the following 
cases:

1) fCLK >> fsig : The measured waveform repetitive frequency 
(fsig) is very low compared the sampling clock frequency (fCLK),
as shown in Fig. 3.

   2) fCLK (1/α) fsig : The measured waveform repetitive 
frequency (fsig) is approximated to the harmonics of the 
sampling clock frequency (fCLK), as shown in Fig. 4.

α = 1, 1/2, 1/3, 2/3, …..

3)  fCLK fsig : The measured waveform repetitive frequency 
(fsig) is very close to the sampling clock frequency (fCLK), as 
shown in Fig. 5.
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Fig. 6 shows the waveform reconstruction comparison for the 
random sampling using 64 sampling points, and we understand 
waveform missing phenomena intuitively.

Fig. 2 Development of a reconstructed waveform for a random sampling

Fig. 3 Waveform missing phenomenon in case of fCLK >> fsig

Fig. 4 Waveform phenomenon missing in case of fCLK (1/6) fsig

Fig. 5 Waveform missing phenomenon in case of fCLK fsig

Fig. 6 Waveform reconstruction comparison for random sampling (64 points).

III. GOLDEN RATIO AND GOLDEN-SECTION SEARCH
ALGORITHM

The golden section search algorithm is to obtain an extreme 
value of the unimodal function f(x) efficiently [5, 6]. By 
comparing two function values, the extreme value can be 
obtained by narrowing the range successively (Fig. 7); this 
algorithm is known as the most efficient algorithm to find the 
extreme of the unimodal function. The range of the 
independent variable x has three points whose distance ratios
are as follows:

1:11: (1)

It follows from Eq. (1) that

012 (2)

Then we have the following:

618.1
2

51
(3)

is known as the golden ratio and it has several properties 
as follows [5-7]:
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12 (4)

1/1 (5)

The merit of golden section search is that the narrowed 
range is greater than the one with the ternary search and its 
ratio is always constant. If the three points do not satisfy Eq. 
(2), some narrowed range will be smaller, and then the 
number of search times may increase. Another merit of the 
golden search is that the previous function value can be 
reused.

Fig. 7 Golden section search algorithm to find an extreme value of a unimodal 
function.

IV. PROPOSED GOLDEN RATIO SAMPLING

Fig. 8 shows the simulation result of our proposed golden 
ratio sampling (fCLK = fsig ) with 16 points from the phase 
zero of the input waveform. The period of the input signal is 
normalized as 1 and that of the sampling clock is 1/ . Their 
rate is :1, which we call the golden ration sampling. Then, 
although the Nyquist sampling theorem is violated, the input 
waveform can be reconstructed from the sampled points 
because the input signal is repetitive and the equivalent-time 
sampling is employed. Table I shows their phases and their 
distances. We see from Fig. 8 that waveform missing is not 
observed and an efficient waveform acquisition is obtained. 

This can be explained with the golden section search 
algorithm. We see from Table I that the order of the sampling 
point phases in Fig. 8 is similar to the ones with the golden 
section search in Fig. 7 when the start phase is set appropriately.

A. Phase distance between successive sampling points
The normalized phase distances between previous and 

present sampling points are always 1/ (=0.618) or 1/ ^2
(=0.382) as shown in Table I. This means that the interval 
between the previous and present points must apart by a 
constant, and never be close. Thus, sampling points disperse 
across the period of the input signal.

Fig. 9 shows the maximum and minimum steps to the next
point versus total number of acquisition data(Ns), where fsig = 
1, fCLK = . There, both steps decrease by 1/ every which can 
be explained by Fibonacci numbers. As the result, they 
decrease by about 1 / Ns. We consider that it is the repetitive 
golden-section search of every divided section. With the 
golden ratio sampling, the time resolution improves by 1 / N. 

In the case of the sampling at random, the time resolution 
improves by 1 / Ns. Thus we see that the golden ratio sampling 
realizes highly efficient data acquisition for the equivalent -
time sampling system.

Fig. 9 Maximum and minimum steps in the golden-ratio sampling.

Fig. 8 The sampling order with the golden ratio sampling starting from phase 
0 (16 points).

B. Simulation Results
We show simulation results for the histogram of the 

sampling points generated by the proposed golden ratio 
sampling rate in Fig. 10. This is the result after 1000-point
acquisition and the horizontal axis indicated the phase of the 
sampled point, which is normalized from 0~2 to 0~1. The 
sampling points disperse uniformly as the standard deviation of 
the histogram is sufficiently small (0.0004).

Fig. 11 shows the standard deviation change of the 
histogram over the number of the total sampling data (N). Here
the standard deviation is defined as 

( ([the histogram data – the uniform histogram data] ^2) / B).

      B: number of bins.

In Fig. 11, the blue dots show the simulated standard deviation
for each N, and the red line indicates their fitting curve. The 
standard deviation decreases rapidly as N increases; it is 
proportional to N^-0.92. This means that the sampled points 
move randomly and stay uniformly.
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Next, we consider the integral randomness of the phases of 
the sampled points. Fig. 12 shows the accumulated histogram 
in Fig. 10, where the previous normalized count (histogram 
data) is accumulated to next bins and for the phase 1.0 of the 
horizontal axis, 1.0 of the vertical axis is provided. We search 
its root-mean-square (RMS) value versus number of data. Here 
the standard deviation is defined as

( ([the accumulated histogram data – the linear accumulated 
histogram data] ^2) / B).

B: number of bins.

In other words, Fig. 10 shows the differential nonlinearity 
(DNL) while Fig. 12 shows the integral nonlinearity (INL) of 
the sampled data phases.

Fig. 13 shows the INL standard deviation change in Fig. 12
in case of the golden ratio sampling, with respect to the number 
of the total sampling data. The blue dots show the INL standard 
deviation obtained by simulation and the red line indicates their
fitting line. The INL standard deviation decreases as the 
number (N) of the total data increases, which is proportional to 
N^-0.95. The steep incline means uniformness and less 
oscillation means randomness.

To find the optimal sampling frequency which minimizes
the INL standard deviation with respect to the number (N) of 
the total data, we have simulated using the various
relationships between the sampling clock and input signal 
frequencies, as shown in Eq. (6).

CLKsig f
P
Qf (6)

(where P and Q are integers and relatively prime.)

P is the maximum number of the total measurable sampled 
phases, whereas Q determines the phase distance for each 
sampling. The simulation results are shown in Fig.14, where
the RMS value of the INL standard deviation from the fitting
curve with respect to Q for P=1024 and N=1000. Here the 
RMS is defined as

( ([the blue dot data – the fitting red curve] ^2) / N).

In Fig. 14, the horizontal axis indicates Q where the vertical 
axis shows RMS. The RMS becomes minimum at Q = 637 and 
it is second minimum at Q=397 (Fig.15). Notice that
1024/637=1.6075.. and 1024/(1024-397) =1.633…: they are 
nearly equal to =1.618, and we see that the optimum sampling 
condition is related to the golden ratio.

Remark:

(i) The fact that the RMS is small means that the sampled 
phase is uniform as well as random. Then the results in Fig. 8 
and Fig.15 show that the golden ratio sampling acquires the 
waveform randomly and uniformly in phase, and the waveform 
missing does not occur.

(ii) Even when the approximate golden ratio sampling, for 
instance 1.1618 and 1.6181, is used, the waveform missing 
does not occur; so the golden ratio sampling condition is robust 
for no waveform missing.

(iii) The maximum number of the sampling points depends on 
whether the sampling clock and the input signal are 
synchronous. For example, suppose that an input signal clock 
period is 1.0 and the sampling clock period is 0.618 (hence 
they are synchronous), then the maximum number of the 
sampling points is 500[points] as 0.618 = 618/1000 = 309/500. 
After 500 times acquisition, you cannot obtain further data with
new phases. In other words, the frequency ratio between the 
input signal and the sampling clock has to be an irrational 
number (in other words, both are asynchronous) for data 
acquisition with many phases.

TABLE I. SAMPLED PHASES AND THEIR GAPS (FIG. 8)

No. Phase Phase Distance Max. Step Min. Step
1 0.000

0.618
1 1

2 0.618
0.382

0.618 0.382
3 0.236

0.618
0.382 0.236

4 0.854
0.382

0.382 0.146
5 0.472

0.382
0.236 0.146

6 0.090
0.618

0.236 0.090
7 0.708

0.382
0.236 0.090

8 0.326
0.618

0.146 0.090
9 0.944

0.382
0.146 0.056

10 0.562
0.382

0.146 0.056
11 0.180

0.618
0.146 0.056

12 0.798
0.382

0.146 0.056
13 0.416

0.382
0.090 0.056

14 0.034
0.618

0.090 0.034
15 0.652

0.381
0.090 0.034

16 0.271 0.090 .0034

Fig. 10 The histgram of the data obtained using the golden ratio sampling 
clock (1000 points).
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Fig. 11 DNL standard deviation change of the histgram versus the number of 
the total sampled data N (golden ratio sampling case).

Fig. 12 Accumulated histogram of the sampling data obtained using the 
golden ratio sampling clock (N=1000 points).

Fig. 13 INL standard deviation change in Fig.11 versus the number of the total 
sampling data (golden ratio sampling case).

Fig. 14 RMS from the approximate curve versus the frequency (Q) for 
P=1024.

Fig. 15 Enlarged views of Fig. 13.                                                      
(Left) The RMS is second minimum at Q=397. P/(P-Q)= 1.633.. 

(Right): The RMS is minimum at Q=637.  P/Q= 1.607…

V. DISCUSSION

In this paper, we have investigated the golden ratio 
sampling and we consider that this can be applied to LSI 
testing and measurement technologies as follows:

(1) Wideband Waveform Sampling Systems:  if the input 
signal is repetitive and its period is known, its efficient 
waveform acquisition with equivalent-time sampling is 
realized by employment of the adjustment function for the 
sampling clock frequency using the golden ratio, so that 
the waveform missing phenomena are not caused.

(2) ADC Testing with Histogram Method: The histogram 
method with a sine wave input is widely used for ADC 
testing [8]. For its given sampling clock frequency, its 
input frequency can be chosen to obtain the histogram data 
efficiently with relatively small number of data. We see in 
Fig. 16 that the histogram test in waveform missing cases 
does not work properly, while it works well in case of 
golden ratio sampling; DNL and INL of the ADC can be 
measured accurately. Fig. 17 shows the DNL simulation 
result that compares golden-ratio sampling and sampling at 
random.

(3) Time-to-Digital Converter Calibration: Non-linearity of a 
flash-type time-to-digital converter can be calibrated by 
applying two asynchronous clocks to two inputs and 
obtaining the histogram of its output data [9]. If the ratio 
of their frequencies is related to the golden ratio, then the 
calibration may be performed effectively.

(4) Integral-type Time-to-Digital Converter: A high 
performance integral-type time-to-digital converter which 
uses two clocks can be realized if their frequency ration is 
the golden-ratio. A part of it is described in [10] and its 
details will be reported elsewhere.

The limitation of the proposed sampling technique is the 
following: Two repetitive signals with different frequencies are 
used, and one of its repetitive frequency should be known so 
that the other frequency should be adjusted/controlled.
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(a)  In case of fCLK >> fsig

(b)  In case of fCLK = (1/ ) fsig

(c) In case of fCLK fsig

(d) Golden ratio sampling case

Fig.16 ADC histogram sampling in waveform missing cases and golden ration 
case with 1,000 points.

Fig.17 ADC histogram test of DNL with 154,480 points, 8bit                   
(Left) Golden-ratio sampling (Right) at Random

VI. CONCLUSION

In this paper, efficient sampling techniques for equivalent-time 
sampling have been presented. With our proposed golden ratio 
sampling rate, waveform missing phenomena do not occur and 
an order of the sampling points is arranged in a pseudo random
manner. Thus, the sampling timing for the waveform 
acquisition disperses over one period of the measurement 
waveform. The proposed technique can be used for equivalent-
time sampling systems and ADC testing with the histogram 
method, as well as time-to-digital converter calibration and 
design. 

We conclude this paper by remarking that beautiful 
mathematics such as golden ratio leads to sophisticated 
analog/mixed-signal IC design and testing [11, 12].
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