

S38-1 Data Converters II15:45-16:15 PMNov. 2, 2018 (Fri)

ICSICT-2018

2018 IEEE 14th International Conference on Solid-State and Integrated Circuit Technology

Oct. 31- Nov. 3, 2018 Huangdao Sheraton Hotel, Qingdao, China

Performance Improvement of Delta-Sigma ADC/DAC/TDC Using Digital Technique

Haruo Kobayashi J.-L. Wei, M. Murakami, J. Kojima, N. Kushita, Y. Du, J. Wang

Gunma University, Japan

Gunma University Kobayashi Lab

Contents

- Objective of This Paper
- What is DWA ?
- LP, HP DWA
- Multi-Bandpass DWA
- Multi-Bandpass Complex DWA
- Second-Order DWA
- Application to Multi-bit $\Delta\Sigma$ TDC
- Conclusion

Contents

Objective of This Paper

- What is DWA ?
- LP, HP DWA
- Multi-Bandpass DWA
- Multi-Bandpass Complex DWA
- Second-Order DWA
- Application to Multi-bit ΔΣ TDC
- Conclusion

Objective of This Paper

Review the research results of authors' group

in the area of **DWA**: Data Weighted Averaging

ADC/ DAC performance improvement with simple digital techniques

- Consider their application to TDC
- Consider to unify the DWA algorithms and establish their design methodology.

Contents

Objective of This Paper What is DWA ? LP, HP DWA Multi-Bandpass DWA Multi-Bandpass Complex DWA Second-Order DWA • Application to Multi-bit $\Delta\Sigma$ TDC Conclusion

Calibration Techniques Classification

ADC/DAC/TDC digital calibration techniques prevail in nano-CMOS era.

- Error Correction
- No measurement of errors
- Redundancy usage
- Self-Calibration
- Error measurement
- Compensation
- Reference
 - Voltage
 - Current
 - Time (frequency)
 - Linearity

DWA Techniques

- Error Correction
- No measurement of errors
- Redundancy usage
 Time averaging of errors
 Spectrum shaping of errors

DWA: Data Weighted Averaging

DEM: Dynamic Element Matching

Segment DAC with Redundancy

Digital input = 4

Multiple realization configurations

Unit Cell Mismatches

ΔΣ Modulation and DWA

 $Vout(z) = Vin(z) + (1 - z^{-1}) \cdot \delta(z)$

DAC nonlinearity $\delta(z)$ is first-order noise-shaped.

ΔΣ Modulation and DWA

This configuration can NOT be implemented !

Equivalent Operation Using DWA to ΔΣ Modulation

"Infinite" is equivalently realized with wrap-around 12/56

DWA Operation is a fun !

Passing a baton in relay race !

Contents

Objective of This PresentationWhat is DWA ?

• <u>LP, HP DWA</u>

Multi-Bandpass DWA
Multi-Bandpass Complex DWA
Second-Order DWA
Application to Multi-bit ΔΣ TDC
Conclusion

LP: Low Pass HP: High Pass

$LP \Delta \Sigma AD Modulator$

Varieties of ΔΣAD Modulators

Why Multi-bit ADC/DAC inside $\Delta\Sigma$ AD Modulator ?

- High slew-rate of opamp

📥 Large power

<u>Multi-Bit</u>

- Low slew-rate of opamp
- Small power
- Problem:
- Multi-bit DAC nonlinearity

Equivalent LP DWA Algorithm

- Signal \rightarrow Integration x Differentiation = Flat
- DAC Nonlinearity → Differentiation (High Pass)

LP DWA Algorithm Realization

Let's Consider HP DWA Algorithm

- Signal → Differentiation x Integration = Flat
- DAC Nonlinearity →Integration (Low Pass)

HP DWA Algorithm Realization

 $H(z)=1/(1+Z^{-1})$

Back and forth

Contents

Objective of This Presentation What is DWA ? LP, HP DWA

Multi-Bandpass DWA

- Multi-Bandpass Complex DWA
- Second-Order DWA
- Application to Multi-bit ΔΣ TDC
- Conclusion

[1] A. Motozawa, H. Kobayashi, et. al.,
 "Multi-BP ΔΣ Modulation Techniques and Their Applications",
 IEICE Tran, J90-C(Feb. 2007).

Multi-Bandpass DWA

Type II DWA

- •N pointers
- N-channel interleave
- of HP DWA algorithm

26/56

Multi-BP Type II N=4

Multi-BP Type II N=4 Simulation Results

Multi-BP DWA algorithm is effective

Contents

- Research Objective
- What is DWA ?
- LP, HP DWA
- Multi-Bandpass DWA

Multi-Bandpass Complex DWA

Second-Order DWA
 Application to Multi-bit ΔΣ TDC
 Conclusion

[1] M. Murakami, H. Kobayashi, et.al.,

- "I-Q Signal Generation Techniques for Communication IC Testing and ATE Systems", IEEE International Test Conference (Nov. 2016).
- [2] H. San, H. Kobayashi, et. al., "A Second-Order Multi-bit Complex Bandpass ΔΣ AD Modulator With I, Q Dynamic Matching and DWA Algorithm", IEICE Trans. Electron, (June 2007).

Necessity of I,Q signal RF analog front-end of Receiver IC

Linearity testing of

Power

2nd-order Complex Multi-BP ΔΣ DAC

Principle of Complex BP Noise Shape

Complex Resonator

Equivalent Circuit of Complex DWA

Equivalent Circuit Implementation

Attach pointers

Exchange upper-path and lower-path every N clock

Complex Multi-Bandpass DWA Algorithm N = 4 (four zero points)

Simulation Result ~Ideal Linear DAC~

Notches filled with noise

Contents

- Research Objective
- What is DWA ?
- LP, HP DWA
- Multi-Bandpass DWA
- Multi-Bandpass Complex DWA

Second-Order DWA

Application to Multi-bit ΔΣ TDC
 Conclusion

[1] H. Hagiwara, H. Kobayashi, et. al.,
"DA Converter Circuit Provided with DA Converter of Segmented Switched Capacitor Type",
US Patent Application, Pub. No.: US 2005/0285768 A1 (Dec. 29, 2005).

2nd-order DWA

2nd-order DWA is more effective
 But its circuit/operation become complicated

Contents

Research Objective
What is DWA ?
LP, HP DWA
Multi-Bandpass DWA
Multi-Bandpass Complex DWA
Second-Order DWA
Application to Multi-bit ΔΣ TDC

Conclusion

[1] T. Chujo, H. Kobayashi, et. al.,

"Timing Measurement BOST With Multi-bit Delta-Sigma TDC", 20th IEEE International Mixed-Signal Testing Workshop (June 2015).

Principle of $\Delta\Sigma TDC$

ΔΣTDC Configuration

[1] T. Chujo, H. Kobayashi, "Timing Measurement BOST With Multi-bit Delta-Sigma TDC", IEEE IMSTW (June 2015).

[2] Y. Osawa, H. Kobayashi, "Phase Noise Measurement Techniques Using Delta-Sigma TDC", IEEE IMS3TW (Sept. 2014).

Multi-Bit ΔΣ TDC

- 3-bit : 7 comparators and delays
- Fine time resolution with a given measurement time

Shorter measurement time with a given time resolution

• TDC non-linearity due to mismatches among delay cells.

Multi-bit ΔΣ TDC with DWA

For short measurement time:

DWA: Data Weighted Averaging

DSP algorithm of compensation for mismatches among delays.

Measured Result

Analog FPGA Implementation

10,000 TDC output data are measured.

T [ns]

Contents

Research Objective
What is DWA ?
LP, HP DWA
Multi-Band DWA
Multi-Band Complex DWA
Second-Order DWA
Application to Multi-bit ΔΣ TDC

Conclusion

Conclusion

- Spectrum shaping of errors is possible with DWA algorithms.
 Their hardware implementation is simple.
- So far, DWA algorithm derivation is based on mathematical intuition of the researcher as well as simulation.

There are no systematic or theoretical methods.

There are still possibilities of new DWA algorithms.

Final Statement

Mathematics is the alphabet with which God has written the Universe.

Galileo Galilei

Mathematics is the alphabet with which the circuit designer writes his/her new idea.

Kobayashi Laboratory

56/55

Contents

- Research Objective
- What is DWA ?
- LP, HP DWA
- Multi-Band DWA
- Multi-Band Complex DWA
- Second-Order DWA
 - Application to Multi-bit ΔΣ TDC
- Digital Dither for ΔΣ DAC
 Conclusion
- [1] J. Kojima, H. Kobayashi, et. al., "Limit Cycle Suppression Technique Using Digital Dither in Delta Sigma DA Modulator", IEEE ICSICT (Nov. 2016).
- [2] J. Wei, H. Kobayashi, et. al., "Limit Cycle Suppression Technique Using Random Signal in Delta-Sigma DA Modulator", IEEE ICSICT (Nov. 2018).

ΔΣ DA Converter

Merits & Demerits of $\Delta\Sigma$ DAC

X Due to modulator nonlinearity by quantizer

Adding Dither at Input

Adding random signal to digital input

Drawbacks

- Input range sacrifice
- Random signal has to be out of signal band

difficult to generate

Our Approach

Proposed Circuit

< Features >

1 1-bit output

Y

0

0

NOT affect output signal,

thanks to feedback

Digital signal "1" reverses comparator output with XOR

Another Configuration

64/55

16000

Modulator Operation

SFDR Comparison

10-bit case

10-bit case DC = 0.1

SFDR (Spurious Free Dynamic Range)

SFDR = Signal Power Maximum Harmonics Power

SFDR =
$$5.4 \text{ dB} \le 22.9 \text{ dB}$$

Research Objective

- Testing the timing between two repetitive digital signals Ex. Data and clock
 - т in Double Data Rate memory CLK2

Good accuracy

Implement BOST with small circuitry

BOST: Built-Out Self-Test 68/55

TypeIN=8Multi-BP∠∑ADModulator

TypeIN=8Multi-BP∠∑ADModulatorSimulationResults

Modulator operation is confirmed.

Our Work

Focus on Multi-bit ΔΣ Time-to-Digital Converter (TDC)

Repetitive digital signals

 \Longrightarrow $\Sigma\Delta$ TDC can be used

- Simple circuit
- Fine time resolution
- Testing time

Single-bit $\Sigma\Delta$ TDCLongMulti-bit $\Sigma\Delta$ TDCShort

Linearity

Single-bit $\Sigma \Delta$ TDC Good Multi-bit $\Sigma \Delta$ TDC Bad

Bad due to delay elements mismatches

DWA algorithm, BOST (FPGA) verification

Conclusion

- Spectrum shaping of errors is possible with DWA algorithms.
 Their hardware implementation is simple.
- The algorithm derivation is based on mathematical intuition of the researcher as well as simulation.

There are no systematic or theoretical methods.

- There are till possibilities of new algorithm.
- Dither adding at the comparator is effective.