International Conference on Technology and Social Science 2018

INVITED

Output Voltage Ripple Correction with Spread Spectrum Using Frequency Modulation for Switching Converters

Yasunori Kobori*, Natsuko Miki, Yifei Sun, Nobukazu Tsukiji and Haruo Kobayashi (Gunma University)

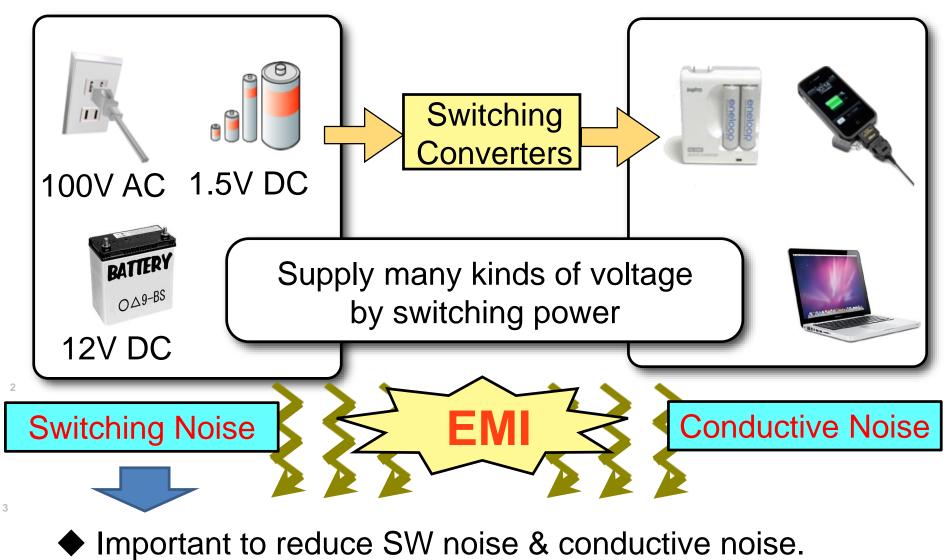
Outline

1. Background

- 1-1 Switching Converter
- 1-2 EMI Reduction Method

2. EMI Reduction with Clock Modulation

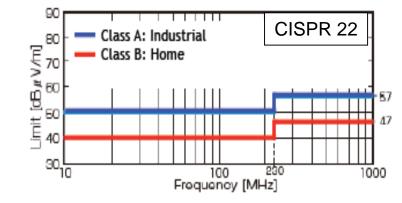
- 2-1 Frequency modulation method
- 2-2 Relationship with modulation level


3. Output Voltage Ripple Correction

- 3-1 Analyze the correction method
- 3-2 Simulation results

4. Conclusion

1


1. Background

Decrease the spectrum level of switching noise.

research process

- Need to reduce noise spectrum level below the Standard Level
- ★ By modulating the clock frequency, spread the clock noise around the clock frequency or its harmonics.

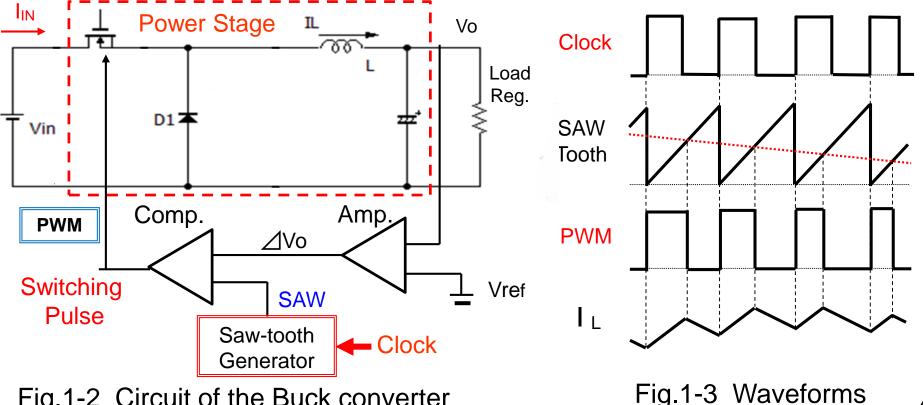
- ◆ The more clock modulation increases, the lower noise spectrum decreases.
 ⇒ Output ripple increases. ⇒ No Good!
- **※ Our Objective**
 - Decrease the peak level of spread spectrum without increase of the output ripple by compensating the clock modulation.

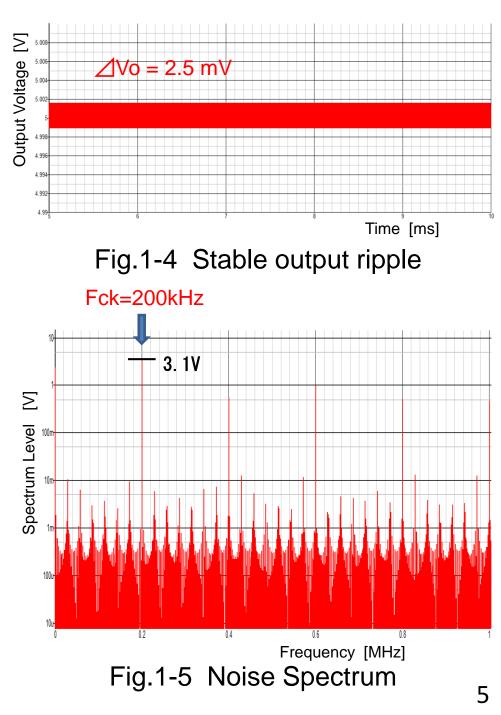
1-1 Buck-type Switching Converter

- Output Voltage Vo is compared with reference voltage Vref and amplified to get \angle Vo.
- $* \Delta Vo$ is compared with SAW-tooth signal

to generate Pulse Width Modulation (PWM) pulse.

* PWM controls power SW & I_L changes to control Vo stable.




Fig.1-2 Circuit of the Buck converter

• Output ripple : 2.5mV

- Spectrum of PWM pulse: Peak level @ Fck: 3.1V
- Important to reduce the spectrum level at Fck.

Table 1 Parameter of converter

Input Voltage	12 [V]
Output Voltage	5.0 [V]
Clock Frequency	200 [kHz]
Inductance	200 [uH]
Capacitance	220 [uF]

1-2 Spectrum Reduction Method

* To reduce EMI noise, clock frequency is modulated.

 \Rightarrow Clock spectrum is spread and reduced.

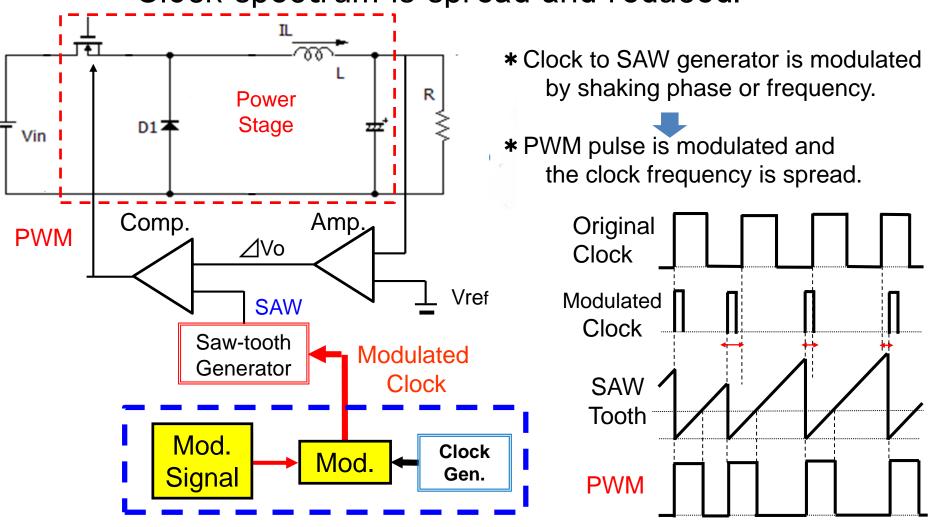
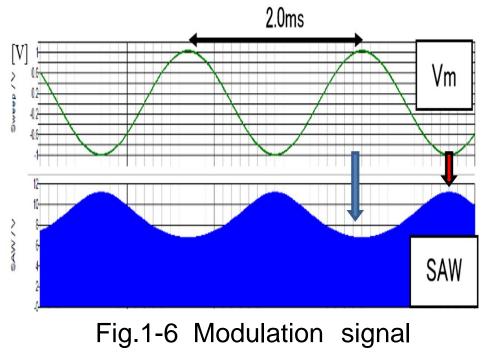



Fig. 1-5 Converter with EMI reduction

- Modulation signal: SIN
- •Frequency: Fm =500 Hz
- Amplitude : Vm=2 Vpp
- * Spectrum level is reduced from 3.1V to 0.5V (-15.8dB).

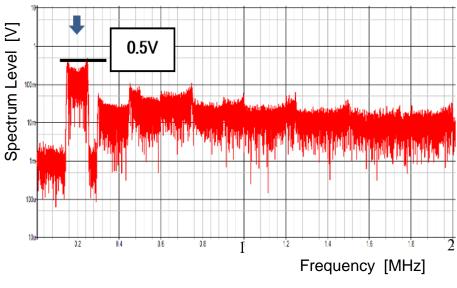


Fig.1-7 Spectrum with modulation

2.0ms Modulation signal: SIN Vm •Frequency: Fm =500 Hz Amplitude : Vm=2 Vpp * Spectrum level is reduced from 3.1V to 0.5V (-15.8dB). SAW ★Output ripple increased 20mV. Fig.1-6 Modulation signals Need to suppress the ripple \geq 0.5V Leve keeping spectrum level low. Spectrum I Σ 20mV **Dutput Voltage** Vo 0.2 04 0.6 0.8 Frequency [MHz] Time [ms]

Fig.1-8 Spectrum with modulation

Fig.1-7 Spectrum with modulation

Outline

Background
 1-1 Switching Converter
 1-2 EMI Reduction Method

2. EMI Reduction with Clock Modulation

- 2-1 Frequency modulation method
- 2-2 Relationship with modulation level

3. Output Voltage Ripple Correction

- 3-1 Analyze the correction method
- 3-2 Simulation results

4. Conclusion

9

2. EMI Reduction with Frequency Modulation

2-1 Frequency modulation method

VCO: Voltage Controlled Oscillator

10

- * Clock pulse is generated using VCO.
 - •VCO is modulated by Triangular (or Sine) signal.
- * Spectrum of PWM pulse has flat top shapes.
 - •Peak level is reduced from 3.1V to 0.55V. (-15dB)

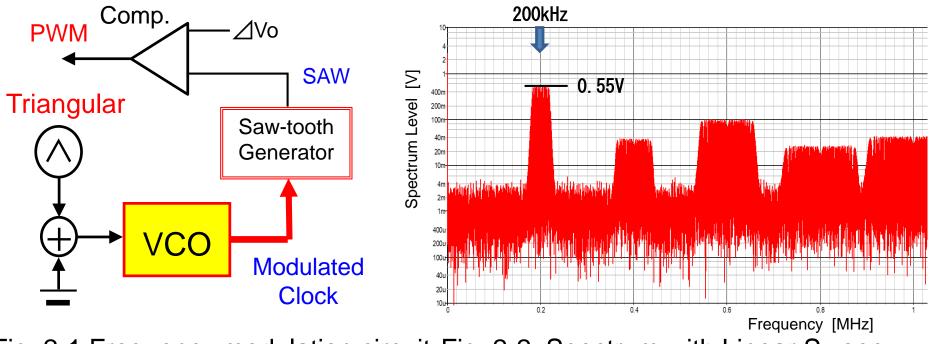
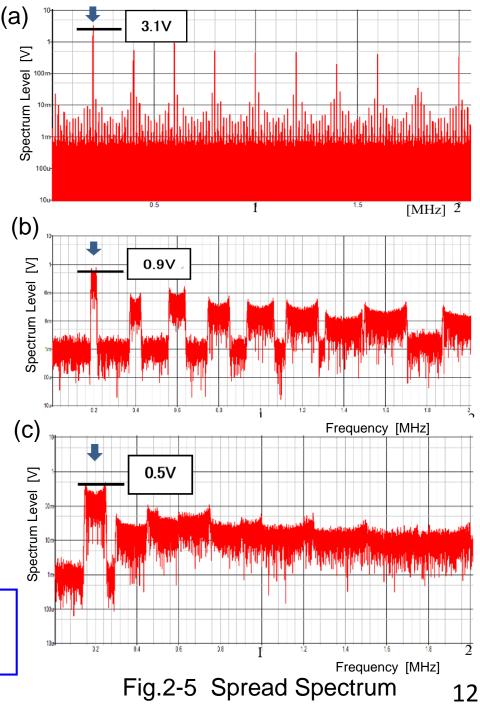
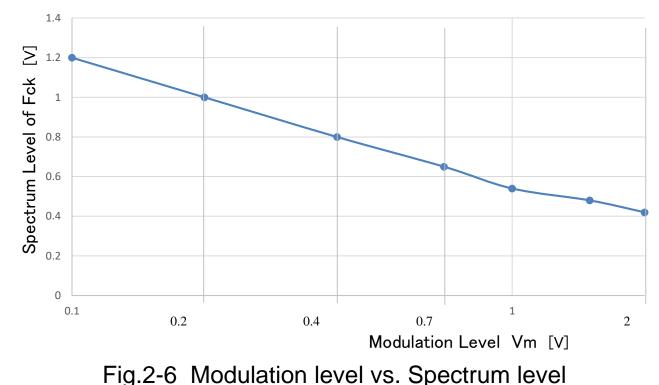



Fig. 2-1 Frequency modulation circuit Fig. 2-2 Spectrum with Linear Sweep

- Comparison of spectrum
 - (a) Without modulation

(Vm=0 V)

- (b) with modulation 1 (Vm=0.5V)
- (c) with modulation 2 (Vm=2.0V)
- Spectrum level at Fck
 3.1V ⇒ 0.9V ⇒ 0.5V
 [-10.4dB] [-5.1dB]
 ↓↓↓
 Check the relationship
 between Vm & spectrum level

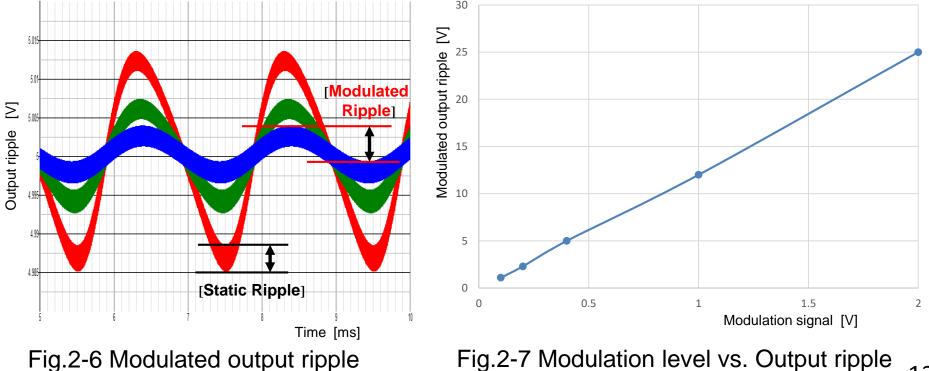


2-2 Relationship with modulation level

(1) modulation level vs. Peak spectrum level* Spectrum level is in proportion to logarithm of Vm.

•Vpeak = $0.55 - 0.65 \cdot LOG_{10}(Vm) [V]$ (2-1)

Here, Vpeak is the peak level of Fck spectrum, Vm is the amplitude of modulation signal.



(2) Relationship: modulation level vs. output ripple

- * Output voltage ripple is changed by modulation signal level.
 - Modulated ripple: caused by modulation signal
 - Static ripple : caused by switching pulse

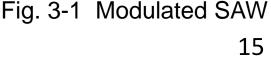
* Modulated output ripple is in proportion to modulation level.

• ∠Vo_m = 12.5 · Vm [mV]

(2-2)

Outline

- 1. Background
 - 1-1 Switching Converter
 - 1-2 EMI Reduction Method
- 2. EMI Reduction with Clock Modulation 2-1 Frequency modulation method 2-2 Relationship with modulation level
- 3. Output Voltage Ripple Correction
 - 3-1 Analyze the correction method
 - 3-2 Simulation results
- 4. Conclusion


3. Output Voltage Ripple Correction

3-1 Analysis of ripple correction method

 Consider the duty ratio of modulated SAW-tooth signal
 Period of SAW signal is changed by modulation signal. But amplified output voltage keeps the level in a short time.
 ⇒ Pulse width W is not changed. ⇒ Duty ratio is changed.

D'=W/(To - Δ T)=(W/To)/(1- α) = Do(1+ α) (3-1) ∴ $\alpha = \Delta$ T/To <0.01 (=Fm/Fck) Δ D= α Do= 2(Vm/Vb)/(Fck/Fm) (3-2) Here, Fck=K·(Vb+Vm) K [kHz/V] is the sensitivity of VCO Δ Vo

* \angle D is the cause of the modulated ripple.

То

To−⊿T

W

* Cancel $\angle D$ in the SAW-tooth generator by compensating the slope of SAW-tooth signal \Rightarrow Pulse width W is changed into modulated width W'. ⇒ Compensated circuit: additional current source. Investigate conductance G which is controlled by Vm.

 $T = (T_{MAX} - T_{MIN}) / \{Fo / (Fm / 2)\}$ $\approx 2(Vm/Vb)/(Fo/Fm)=2(Vm/Vb)To/Tm$ (3-3)(3-4)

 $\alpha = \Delta T / T_0 = 2(V_m / V_b) / T_m$

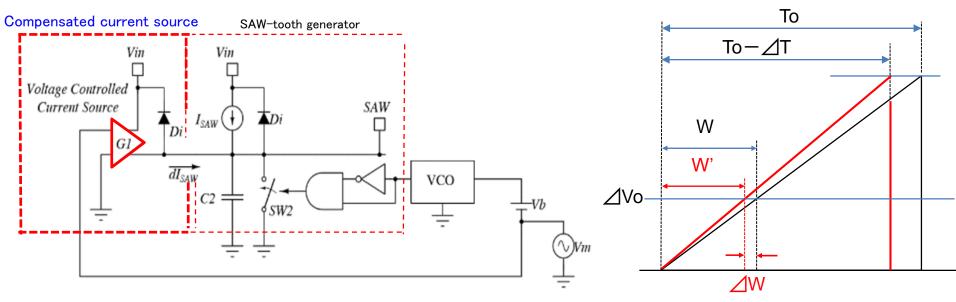
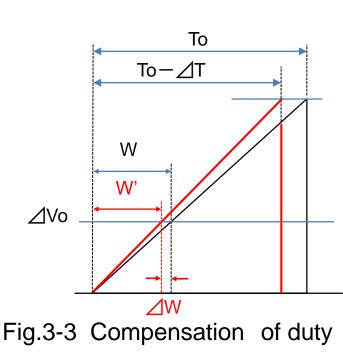


Fig.3-2 Compensated SAW generator

Fig.3-3 Compensation of duty 16


* To design conductance G, check the relationship Fm & Fck.
* The number of clock pulses in the half period of Fm

is derived as Eq. (3-5).

* Set the additional current ΔI_{SAW} , derive the current ratio β .

 \Rightarrow Ratio β is equal to ratio α . \Rightarrow Set conductance G.

 $\alpha = \Delta T / To = 2(Vm / Vb) / Tm$ (3-4) $N=(Tm/2)/Tck=0.5 \cdot Fck/Fm$ (3-5) $\Box I_{SAW} = G \cdot Vm$ (3-6) $\beta = (\Delta I_{SAW} / I_{SAW}) / N = G \cdot Vm / (I_{SAW}N)$ (3-7)* From Eq.(4)=Eq.(7), $2(Vm/Vb)/Tm = G \cdot Vm/(I_{SAW}N)$ (3-8) The conductance G is set bellow. $G = I_{SAW} / Vb [S]$ (3-9)

3-2 Simulation results

* Theoretical conductance: G= I_{SAW}/Vb [S] = 500 [uS]

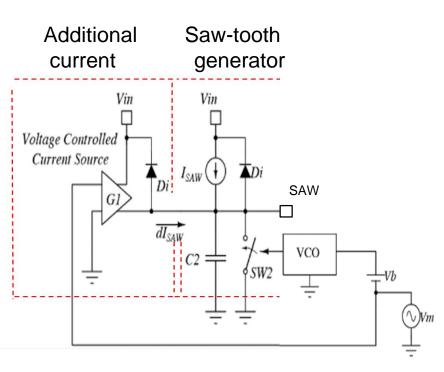
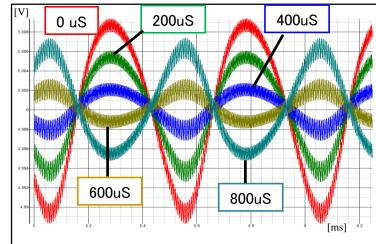


Fig.3-4 Circuit of new SAW generator


Table 2-1 Parameters of converter

1	Input Voltage	Vin	12	[V]
2	Output Voltage	Vo	5.0	[V]
3	Output Current	lo	0.5	[A]
4	Inductance	Lo	200	[uH]
5	Capacitance	Со	220	[uF]
6	Clock Frequency	Fck	200	[kHz]

Table 2-2 Parameters of VCO & SAW gen.

1	Sensitivity	S	50	[kHz/V]
2	Base Voltage	Vb	4.0	[V]
3	Modulation V.	Vm	0.5~2.0	[V]
4	Modulation Freq.	Fm	0.5~2.1	[kHz]
5	SAW Current	I _{SAW}	2.0	[mA]
6	SAW Capacitance		1.2	[nF]

Relationship between G & Vom
 * Set modulation signal: Fm=2 kHz, Vm=2 V.
 * Modulated ripple with various G.
 Modulated ripple is decreased
 when the conductance increase.
 But G is larger than 500uS,
 phase of the ripple is reversed.
 * Show relationship in Fig. 6.

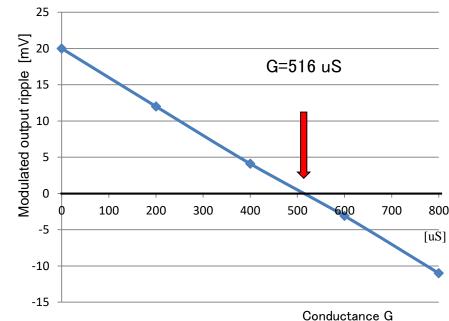


Fig. 3-6 Conductance vs. modulated ripple

 $V_{R}=20-(31 \text{mV}/800 \text{uS}) \cdot \text{G} [\text{mV}]$

* Best conductance is G= 516 uS Simulation result (Fm=2.0kHz, Vm=2.0V, Sine Wave)
 * Best conductance is about G=510 uS

 Modulated ripple is reduced from 20mV to 0.8mV (-28dB).

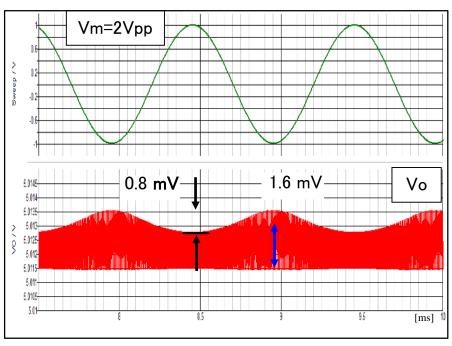
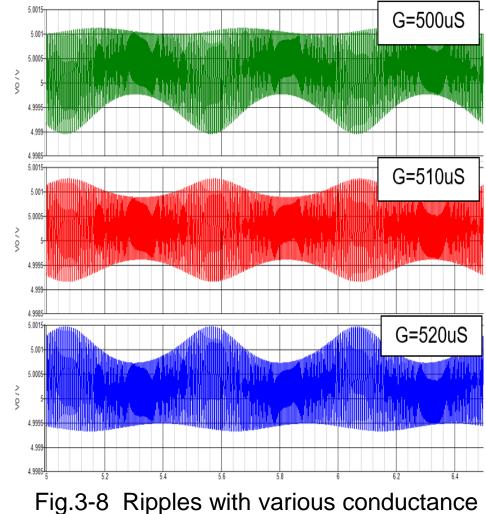
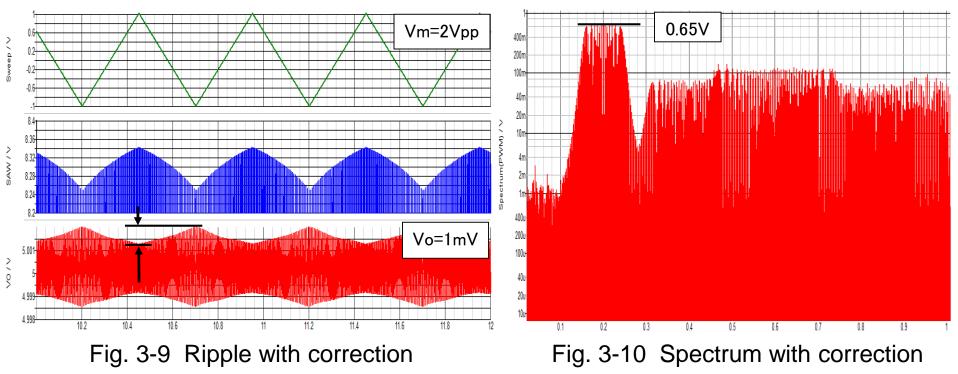
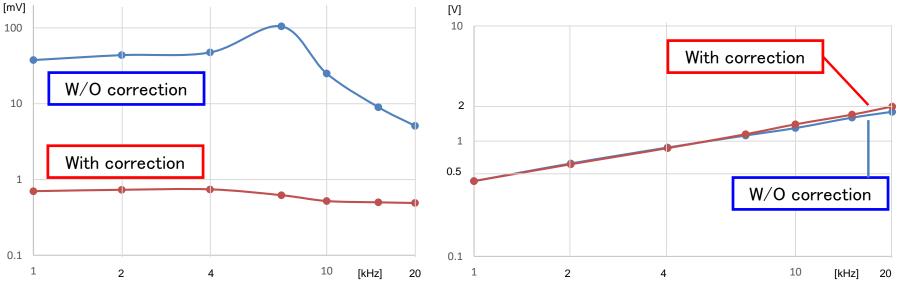



Fig. 3-7 Ripple with G=510 us


Modulation signal : Triangular, Fm=2.0kHz, Vm=2.0V

* Output ripple @ G=510 uS

Modulated ripple = 0.8mV, Static ripple = 2.7mV


* Peak spectrum level: Vp = 0.65 V. (@ Fck = 200 kHz)

It is almost same as that of no ripple correction.

 Transfer function: modulation signal to the output ripple (Modulation signal : Triangular, Vm=2.0 V)
 * Without correction: similar to closed-loop transfer function
 * With correction : very low and constant
 2) Spectrum level vs. Modulation Frequency Fm;

* Peak spectrum level is proportional to Modulation Frequency.
* Spectrum level is no concern with ripple correction.

rig. 5-11 rill vs. Ripple

Fig. 3-12 Fm vs. Peak spectrum

Conclusion

- Developed ripple correction method for SW converters in which spectrum level is reduced with frequency modulation.
- 2. Shown the relationship

between modulation level and compensation level.

Conductance G for the additional current level is

 $G=I_{SAW}/Vb[S]$: Here, I_{SAW} is current of SAW generator.

Vb is the DC voltage of VCO.

3. Simulation results:

Modulated ripple is corrected less than 1 mVPeak spectrum level at clock Fck is reduced -28 dB.

 Future work is to apply this correction method to another SW converters.

(ex. current mode switching converter)

Thank you for your kind attention!

Is there any question?