International Conference on Technology and Social Science 2018 (ICTSS 2018) Invited

Low Switching Loss and Scalable 20-40 V LDMOS Transistors with Low Specific On-Resistance

Jun-ichi Matsuda, Jun-ya Kojima, Nobukazu Tsukiji, Masataka Kamiya, and Haruo Kobayashi

Gunma University

Apr. 18, 2018 (Kiryu, Japan)

Outline

- 1. Objective and Background
- 2. Conventional and Proposed LDMOS Transistor Structures
- 3. Simulation Results
 - Electric characteristics
 - I_{DS}-V_{DS}, I_{DS}-V_{GS}, Breakdown, Specific on-resistance vs. breakdown voltage
 - Hot carrier endurance
 - Total power dissipation
- 4. Summary

Simulation: 3D device simulator Advance/DESSERT developed by AdvanceSoft Corporation

Objective and Background

Objective:

 To obtain scalable (low cost) 20-40 V LDMOS transistors for automotive applications to meet the requirements for (1) wide SOA, (2) high hot carrier endurance, (3) low specific on-resistance, and (4) low switching loss

Uses of LDMOS transistors:

- 20-40 V LDMOS transistors are widely used as switching devices of power converters for automotive as well as consumer applications including smartphones and tablets.
- Automotive applications operating in harsh environments have to meet the above requirements.

Conventional devices:

- We developed dual RESURF scalable 30-50 V LDMOS transistors based on a basic LDMOS transistor in 2015.
- These devices meet the above requirements except for (4).
- Thus we proposed a 40 V LDMOS transistor to meet all the requirements by improving the 30-50 V LDMOS transistors. ⇒ This is a single device.

⇒ Scalable (low cost) lower voltage devices are required to obtain circuit design flexibility.

Proposed device:

• We propose 20-40 V LDMOS transistors by reducing the drift region of the 40 V LDMOS transistor.

Note: SOA (safe operating area), RESURF (reduced surface field)

Problems of a Basic LDMOS Transistor

- (1) Low hot carrier endurance due to DAHC (drain avalanche hot carriers)
 - ⇒ Caused by a high electric field in **Region A**

Problems

- (2) Drain current expansion (CE) leading to a narrow SOA
 - ⇒ Caused by a high electric field in **Region B due to the Kirk effect**

(3) High specific on-resistance

 \Rightarrow Caused by a low impurity concentration in the n-drift region

Conventional LDMOS Transistor Structure

A cross-section of the conventional device (One cell size: $3.725 \ \mu m \times 0.3 \ \mu m$) **0.35 \ \ \mu m CMOS compatible process**

- P-buried Layers (Dual RESURF Structure)
 - PBL1: Enhances the RESURF effect in Region A, leading to high hot carrier endurance
 - PBL2: ① Causes a uniform electric field in the drift region
 ② Avoids premature breakdown in Region C
- N-drift Layers
 - •NDL1: The basic layer of the drift region
 - •NDL2: Reduces specific on-resistance and suppresses CE due to a low electric field in Region B
- Field Plate (connected to the gate)
 - Complements the RESURF effect in the drift region
 - Increases the Miller capacitance, leading to a large switching loss

Reduction of the switching loss is required.

Proposed LDMOS Transistor Structure

- P-buried Layers (Dual RESURF Structure)
 - PBL1 and 2: Same as the conventional device
- N-drift Layers
 - NDL1 and 2: Same as the conventional device
 - •NDL3: Reduces specific on-resistance and suppresses CE

(Needed to reduce the specific on-resistance increased by GFP)

- Field Plate (connected to the ground): GFP (Grounded Field Plate)
 Complements the RESURF effect in the drift region
 - Reduces the Miller capacitance, leading to a low switching loss
- Single LDMOS transistor (only for 40 V operation)
 - limits the flexibility of circuit design

Scalable (low cost) lower voltage devices are required to enhance the flexibility of circuit design.

How to Make Scalable LDMOS Transistors

Reduction of the Drift Region Length (DRL)

• Each of p₁, p₂, and f_p is scaled down in proportion to the change in d_r (DRL).

 n₃ is not changed to avoid an increase in the electric field near the gate-side drift region edge.

 f_p : the length of GFP over the drift region d_r : the length of the drift region (DRL)

- a_r: the length of the drift region (D
- n_3 : the length of NDL3
- p₁: the length of PBL1 under the drift region
- p₂: the length of PBL2 under the drift region

$I_{\text{DS}}\text{-}V_{\text{DS}}$ Characteristics of the Proposed Devices

(a) No DRL reduction device (One Cell: $3.555 \mu m \times 0.3 \mu m$)

- **SOA** excluding the CE region
 - \Rightarrow Sufficiently satisfies an operation V_{DS} of 40 V
- Specific on-resistance
 - \Rightarrow R_{on}A = 40.9 m Ω · mm² at V_{GS} = 3.3 V

(b) 50 % DRL reduction device (One Cell: $2.23\mu m \times 0.3\mu m$)

SOA excluding the CE region

 \Rightarrow Sufficiently satisfies an operation V_{DS} of 20 V

Specific on-resistance

 \Rightarrow R_{on}A = 18.4 m Ω ·mm² at V_{GS} = 3.3 V

$I_{\text{DS}}\text{-}V_{\text{GS}}$ Characteristics of the Proposed Devices

(a) No DRL reduction device (One Cell: $3.555 \mu m \times 0.3 \mu m$)

(b) 50 % DRL reduction device (One Cell: $2.23 \mu m \times 0.3 \mu m$)

■ Threshold voltage V_{TH}

 V_{TH} (at I_{DS}= 0.1 μ A and V_{DS} = 0.1 V) =1.023 V

■ V_{TH} reduction due to a V_{DS} increase ΔV_{TH} ($V_{DS} = 0.1V \rightarrow 20 V$) = 0.100 V

Very low leak current even at V_{DS} = 20 V

Breakdown Characteristics of the Proposed Devices

Breakdown Characteristics of the Proposed Devices

 Breakdown voltage BV_{DS} (at I_{DS} = 1 × 10⁻¹³ A)
 50 % DRL reduction device: BV_{DS} =39.8 V
 ⇒ Ensures sufficient margin for an operation V_{DS} of 20 V
 No DRL reduction device: BV_{DS} =61.9 V

⇒ Ensures sufficient margin for an operation V_{DS} of 40 V

Electric Field Distributions upon Breakdown

 High electric field regions (Breakdown locations)

⇒ All in the bulk for both devices

Even repetitive **ESD** events **would not cause damage** to the surface and the intrinsic MOSFET

(a) No DRL reduction device

(b) 50 % DRL reduction device

R_{on}A-BV_{DS} Characteristics

 ■ R_{on}A-BV_{DS} of the proposed device
 ⇒ Almost the same as that presented by UMC at ISPSD2017
 ⇒ State-of-the-art level

Note: In this simulation, contact and wiring resistances are not considered.

V_{GS} Dependence on I_{PB} + I_{SUB} (Total Hole Current)

- The peak hole currents for both devices
 - Occur near V_{GS} = 2 V where the intrinsic MOSFET operates in the saturation mode
 - Caused by DAHC generated by impact ionization in Region A

A cross-section of the proposed device

Electric Field Profiles along the Surface ($V_{GS} = 2 V$)

(a) NO DRL reduction device

DRL	-E _{xx} (kV/cm)	I _{ss} (μΑ)	V _{DS} (V)	V _{GS} (V)
No Reduction	248 (A)	30.9	40	2
50 % Reduction	254 (B)	30.7	20	2

E_{xx}: Electric field in the x-direction at x = 1000 nm

I_{ss}: Source current (Electron current) for one cell

Note: Hole current by impact ionization = $F(E_{xx}, I_{SS})$

(b) 50 % DRL reduction device

- Both of the proposed devices
 - ⇒ would have almost the same hot carrier endurance
 - ⇒ would likely be able to have high hot carrier endurance due to the dual RESURF structure

Turn-On Characteristics and FOM

The circuit used to obtain turn-on characteristics

FOM (on-resistance × gate charge)

Drift Region Length	Qg/A (nC/mm ²)	$R_{on}A (m \Omega \cdot mm^2)$	FOM (mΩ ⋅nC)
No Reduction	1.18	40.9	48.2
50 % Reduction	1.86	18.4	34.2

Turn-on characteristics of the gate current and the gate voltage (one cell)

- FOM of the no DRL reduction device ⇒ about 1/3 that of the conventional device (141 mΩ·nC)
- FOM of the 50 % DRL reduction device
 - ⇒ much lower than that of the no DRL reduction device due to the lower specific on-resistance

Total Power Dissipation

Switching frequency dependence of P_{TD}

Components of the switching energy loss density per switching cycle E_{sw} for the proposed devices

Drift Region Length	E _{GD} [J/mm²]	E _{ON/OFF} [J/mm²]	E₅w [J∕mm²]
No Reduction	3.89×10^{-9}	1.91 × 10 ⁻⁸	2.30 × 10 ⁻⁸
50 % Reduction	6.14×10^{-9}	5.52 × 10 ⁻⁹	1.17 × 10 ⁻⁸

The switching frequency dependence of the total power dissipation density P_{TD} for the proposed devices

- The P_{TD} of the 50 % DRL reduction device
 - \Rightarrow Much lower than that of the no DRL reduction device for each D_{on} (due to lower **R**_{on}**A**)
 - \Rightarrow Further lower in a high switching frequency region (due to lower E_{sw})

Summary

Each of the proposed 20-40 V LDMOS transistors

Has a wide SOA enough for 20-40 V operations, respectively

Has a state-of-the-art level characteristic for R_{on}A -BV_{DS}

- Has a very low FOM representing high suppression of conduction and switching losses
- Would likely be able to have high hot carrier endurance
- Adequate for harsh environment automotive applications

Enhances the flexibility of circuit design.

Acknowledgement

We would like to express sincere thanks to **AdvanceSoft Corporation** for lending us 3D TCAD simulator.

The development of this simulator is assisted by Japan Science and Technology Agency, National Research and Development Agency using A-STEP program.

Thank you very much for your kind attention!