IPS03 Analog and Power April 28, 2018 (Wed)

A Study on EMI Noise Reduction in Boost-Type PFC Circuit

Noriyuki Oiwa, Shotaro Sakurai, Nobukazu Tsukiji, Yasunori Kobori, Haruo Kobayashi

Division of Electronics and Informatics Gunma University

Gunma Univ. Kobayashi Lab

Outline

- Background and Purpose
- Conventional PFC Power Supply
- Proposed PFC Power Supply
 —Using frequency modulation
- Diode recovery current reduction
- Conclusion

Outline

- Background and Purpose
- Conventional PFC Power Supply
- Proposed PFC Power Supply
 —Using frequency modulation
- Diode recovery current reduction
- Conclusion

What is Power Supply Circuit ?

Commercial power supply circuits
 → Convert AC into DC voltages

Research Purpose

AC-DC converter improvement

- EMI noise reduction in PFC circuit
 →Using noise spectrum spread with frequency modulation
 - Efficiency improvement in high speed operation
 - → Diode recovery current reduction with SiC SBD

PFC: Power Factor Correction SBD: Schottky Barrier Diode

EMI Noise

EMI noise generation by current flow

EMI: Electro-Magnetic Interference

Large scale analog filter for EMI noise removal

Noise Spectrum Spread

- Reducing peaks of higher harmonics of clock frequency
- Spreading noise energy

Problem (High Speed Clock)

Outline

- Background and Purpose
- Conventional PFC Power Supply
- Proposed PFC Power Supply
 —Using frequency modulation
- Diode recovery current reduction
- Conclusion

Role of PFC Circuit

PFC Operation

PFC Circuit

Input current, input voltage: same waveforms

→ Harmonics reduction

Conventional PFC Circuit

Outline

- Background and Purpose
- Conventional PFC Power Supply
- Proposed PFC Power Supply
 Using frequency modulation
- Diode recovery current reduction
 Conclusion

Proposed PFC Circuit

Frequency Modulation

- Frequency modulation fluctuates clock freq. linearly by time
 - → Clock noise spectrum is spread

VCO: Voltage Controlled Oscillator

15/31

PFC Circuit for Simulation

Simulation Results of Conventional PFC

Simulation Results of Proposed PFC

Simulation Results of Proposed PFC

Output Voltage Ripple

Clock frequency changes
 → Output voltage ripple
 does not change much.

 $^{100 \}text{kHz} \pm 1.0 \text{kHz}$

 $200 \text{kHz} \pm 1.0 \text{kHz}$

Outline

- Background and Purpose
- Conventional PFC Power Supply
- Proposed PFC Power Supply
 —Using frequency modulation
- Diode recovery current reduction
- Conclusion

Diode Recovery Current

- Generated at turn off moment
- → Loss enlarged by clock frequency increase

Recovery Current Reduction Approach

Schottky Barrier Diode(SBD) usage

Breakdown voltage: Si (200V) < SiC (600V)

SiC Features

Comparison of SiC with Si

- Pro High breakdown voltage
 - High speed operation
- Con High cost

Cost of SiC as a part is high.

But a whole system using SiC may become lower.

Recovery Current Generation Location

SBD Simulation Circuit

- Only diode simulation
- Observing a change in voltage, current and power at the same measurement point

Simulation Results

27/31

Recovery Current Comparison

Switching Loss Comparison

Outline

- Background and Purpose
- Conventional PFC Power Supply
- Proposed PFC Power Supply
 —Using frequency modulation
- Diode recovery current reduction
- Conclusion

Conclusion

Proposal for PFC power supply in high speed

PFC with frequency modulation

Fixed frequency → Frequency modulation EMI noise reduction

Diode recovery current reduction SiC-SBD employment

Comparison with switching loss

of PN diodes and SiC-SBD

32/31

質問事項

・リカバリー電流の過渡応答時間は? → 次の機会までに調べます。 →Simplisシミュレーション結果 ・SiC使用: 0.2 [ps] ・Si使用: 1.3 [ps]