Apr. 18 2018 (Wen)

Pulse Coding Controlled Switching Converter with Generating Automatic Frequency Tracking Notch Characteristics for Radio Receiver

Yifei Sun, Yi Xiong, Yasunori Kobori, Haruo Kobayashi Gunma University Kobayashi Laboratory t172d004@gunma-u.ac.jp

- Introduction & Objective
- Conventional Switching Converters
- Pulse Coding Method in Switching Converter
- Automatic PWC Control
 - Relationship with the Clock frequency and the Notch frequency
 - Direct generation of clock pulse from input frequency
 - Simulated Noise Spectrum of PWM Signal
- Automatic PWPC Control
- Conclusion and future work

Introduction & Objective

- Conventional Switching Converters
- Pulse Coding Method in Switching Converter
- Automatic PWC Control
 - Relationship with the Clock frequency and the Notch frequency
 - Direct generation of clock pulse from input frequency
 - Simulated Noise Spectrum of PWM Signal
- Automatic PWPC Control
- Conclusion and future work

Research Background

EMI:Electro-Magnetic Interference

Research Objective

[1]EMI: Electro-Magnetic Interference

Research Summary

Proposed method

Spread spectrum method using pulse coding

Design modulation circuit

in order to generate notch frequency automatically

Achievement

Reduction of EMI generated from clock
 Noise removal at specific frequency
 Automatic generation of notch frequency

- Introduction & Objective
- Conventional Switching Converters
- Pulse Coding Method in Switching Converter
- Automatic PWC Control
 - Relationship with the Clock frequency and the Notch frequency
 - Direct generation of clock pulse from input frequency
 - Simulated Noise Spectrum of PWM Signal
- Automatic PWPC Control
- Conclusion and future work

Conventional Switching Converter with Spread Spectrum

Switching Power

[2] PFM: Pulse Frequency Modulation PPM: Pulse Phase Modulation

Spread Spectrum for EMI Reduction

Spread spectrum for EMI Reduction

Simulation conditions
 Input : 12V
 Output : 6V
 Clock frequency : 200kHz

Without EMI reduction

Noise is concentrated in basic and harmonic frequencies

With EMI reduction

 Peak level of clock frequency is reduced a lot
 Noise is concentrated
 Bottom levels are increased
 Not good

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic PWC Control
 - Relationship with the Clock frequency and the Notch frequency
 - Direct generation of clock pulse from input frequency
 - Simulated Noise Spectrum of PWM Signal
- Automatic PWPC Control
- Conclusion and future work

Diffuse Noise to Specific Frequency

Problem

Noise diffusing uniformly (using analog modulation)

Using digital modulation

Noise diffuses to specific frequency

Frequency band where noise does not spread

Notch band created in important frequency band

- - EMI Reduction
 Control of diffused noise

12/37

Pulse Width Modulation in Switching Converter^{13/37}

Input High (1)SEL: High (2)MUX select V_H (3)Generate pulse with long width in comparator

★ $D_H > D_o > D_L$ $D_o = V_o / V_{in}$ ★ manually set WL and WH Input Low (1)SEL: Low (2)MUX select V_L (3)Generate pulse with short width in comparator

Simulation Result with PWC Control

PWM signal spectrum using PWC control

14/37

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter

Automatic PWC Control

- Relationship with the Clock frequency and the Notch frequency
- Direct generation of clock pulse from input frequency
- Simulated Noise Spectrum of PWM Signal
- Automatic PWPC Control
- Conclusion and future work

Automatic PWC Control

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic PWC Control
 - Relationship between Clock frequency and Notch frequency
 - Direct generation of clock pulse from input frequency
 - Simulated Noise Spectrum of PWM Signal
- Automatic PWPC Control
- Conclusion and future work

Relationship with Clock and Notch

18/37

Relationship between Pulse-H and Pusle-L

19/37

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic PWC Control
 - Relationship with the Clock frequency and the Notch frequency
 - Direct generation of clock pulse from input frequency
 - Simulated Noise Spectrum of PWM Signal
- Automatic PWPC Control
- Conclusion and future work

Generating Tck using Direct Calculation^{21/37}

Simulation Waveforms of W_H , W_L Generation

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic PWC Control
 - Relationship with the Clock frequency and the Notch frequency
 - Direct generation of clock pulse from input frequency
 - Simulated Noise Spectrum of PWM Signal
- Automatic PWPC Control
- Conclusion and future work

Simulated Noise Spectrum of PWM Signal Case 1^{24/37}

According to

 $F_{in} = (N + 0.5)F_{ck}$

Case 1 : Fin=750kHz, N=1⇒Fck=500kHz, W_H=1.66µs, W_L=0.37µs Result : Fn=750 kHz, Fck=500 kHz, Fck < Fn < 2Fck

Assume to suppress influence on AM radio in 750kHz \Rightarrow A notch was generated around 750kHz

Case 2:Fin=1.25MHz,N=2 \Rightarrow Fck=500kHz,W_H=1.40µs,W_L=0.60 µs Result:Fn=1.27 MHz, Fck=500 kHz, 2Fck < Fn < 3Fck

© Simulation Result Fn=1.27 MHz 4Fn=5.05 MHz

* Compare bottom levels 4Fn is deeper than Fn

© Condition : same

Simulated spectrum with EMI reduction

Transient Response with F_{in} Change in Case 2

[©] Condition (N=2)

$$F_{in} = 1.25$$
MHz ⇒ $F_{in} = 1$ MHz
 $F_{in} = 1.25$ MHz ⇒ $F_{in} = 750$ kHz

Settling Time $\approx 0 \mu s$

^O Output stability

Ripple: 2.37 mV_{pp} at $F_{in} = 1.25MHz$ 2.77 mV_{pp} at $F_{in} = 1MHz$ $5mV_{pp}$ at $F_{in} = 750kHz$

26/37

Static ripple is about 0.1% of the output voltage *V*_o stable

Transient response with Fin change

Response speed is important when tuning or switching communication channels

Case3 : Fin=1.75MHz, N=3⇒Fck=500kHz, W_H=1.29µs,W_L=0.72µs Result : Fn=1.8 MHz, Fck=500 kHz, 3Fck < Fn < 4Fck

Simulated spectrum with EMI reduction

Simulated Noise Spectrum of PWM Signal Case 3^{28/37}

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic PWC Control
 - Relationship with the Clock frequency and the Notch frequency
 - Direct generation of clock pulse from input frequency
 - Simulated Noise Spectrum of PWM Signal in the higher frequency range
- Automatic PWPC Control
- Conclusion and future work

PWPC Method

Complex coding method

PWPC (Pulse width coding + Pulse phase coding) method

31/37 Automatic Generation of Notch Frequency with PWPC Control

Pulse coding of PWPC method

Design timing in PWPC method

 $W_{H} = To + Tp = Do \times Tck + 0.5Tin$ $W_{L} = To - Tp = Do \times Tck - 0.5Tin$ $\tau = (W_{H} - W_{L})/2 = 0.5 \times Tin$

Simulation Waveforms of W_H , W_L Generation

Theoretical formula result $W_H = 1.67 \mu s$ $W_L = 0.33 \mu s$ $\tau = 0.67 \mu s$ Well matched Simulation result

 $W_H = 1.66 \mu s$ $W_L = 0.37 \mu s$ $\tau = 0.70 \mu s$

Simulated Noise Spectrum of PWPC Control

PWPC characteristic: There are many harmonics of 4NFn(N = 1,2,3 · · ·)

- Introduction & Objective
- Conventional Switching Converters with Spread Spectrum
- Pulse Coding Method in Switching Converter
- Automatic PWC Control
 - Relationship with the Clock frequency and the Notch frequency
 - Direct generation of clock pulse from input frequency
 - Simulated Noise Spectrum of PWM Signal in the higher frequency range
- Automatic PWPC Control
- Conclusion and future work

- Developed pulse coding control in order to generate notch characteristics at desired frequency
- Analyze spread spectrum with notch characteristics
- Automatic generate the notch frequency from Fin

Using $F_{in} = (N + 0.5)F_{ck}$, discussion on direct generation of notch in N=1,2,3 situation using PWC control

Automatic generating of notch frequency with PWPC control

Future Work

 Notch generation using PCC(Pulse Cycle Coding) method

• Extend 4Fn in order to high frequency notch generation using PWPC method

Thank you for Listening