

Automatic Correction of Current Imbalance due to Element Variations in Multi-Phase Ripple Controlled Converter

Jing Li*, Yifei Sun, Yasunori Kobori, Anna Kuwana, Haruo Kobayashi

Gunma University

Development of power supply with

- Automatic correction of current imbalance Due to element variations(L or C)
- Fast response
- Low output voltage ripple control

Approach

- Constant on-time control method
- Multi-phase converter

- Research background
- Constant on-time control
- Four-phase converter solution
 via saw-tooth wave circuit
- Simulation results
- Automatic correction technology for balance of element variation
- Conclusion

Contents

Research background

- Constant on-time control
- Four-phase converter solution
 via saw-tooth wave circuit
- Simulation result
- Automatic correction technology for balance of element variation
- Conclusion

Power Supplies Prevail Everywhere

Power supply bemanded everywhere to provide appropriate voltage for electronic device

Operation of Buck Converter

Demand for Power Supply of Process

Contents

Research background

Constant on-time control

- Four-phase converter solution
- via saw-tooth wave circuit
- Simulation result
- Automatic correction technology
- for balance of element variation
- Conclusion

Ripple Control Converter

Ripple Control with Constant on-time Method

9

Operation of Proposed COT Generator

Proposed COT Converter

No External Clock

- $\underbrace{1}_{1}$ Pin is supplied from the comparator
- (2) Positive edge resets and restarts SAW generator
- ③ Gradient is decided with lo and Cco⊤
- (4) COT pulse is generated by comparing SAW signal and Vcont.

10

Contents

Research background

Constant on-time control

Four-phase converter solution via saw-tooth wave circuit

Simulation result

Transfer function characteristics

• EMI reduction via pulse phase modulation

Conclusion

Single-Phase Converter

Merit of Multi-Phase Converter

13

Proposed Four-Phase Converter Solution

14

Generation of Four-Phase PWM

Current Balance of four-phase Converter

Contents

- Research background
- Constant on-time control
- Four-phase converter solution
 via saw-tooth wave circuit
- Automatic correction technology for balance of element variation
 Conclusion

Imbalance current (Inductance variation)¹⁸

•Two Phase: With element variation (Inductance)

Imbalance current(Capacitance variation)¹⁹

• Four Phase: With element variation (Capacitance in COT generator)

four-phase current

δ 1= (3.88-2.31)/2.13 => 82% δ 2= (2.13-1.56)/2.13 => 27%

Proposed Current Balance Modulation

20

Balance current (Inductance variation)

21

Two Phase : Result of proposed method with good current balance

★ Even if capacitance varies, the current balance can be secured in the same way

Balance current (Capacitance variation) 22

• Four Phase: Result of proposed method with good current balance

- •When L or C for COT pulse is varied, inductor current of each sub-converter is automatically kept in good balance.
- •There is no need to select L and C values, so the cost is reduced.
- •Even if L or C values change due to temperature change, the current balance can be automatically maintained

by the proposed system.

 The current imbalance due to inductance and capacitor variations is well improved.

• Current balance is very good even at large output current.

Thank you for your attention

- Q1:Is the automatic current balancing technique for ripple-controlled power supplies suitable for conventional four-phase buck converter power supplies?
- A1: I have never thought of it before, but I think it is applicable.
- Q2:Can the correction be made even if the current of each phase varies due to the variation in the conduction resistance of the switch?
- A2:Whatever the reason, the current balance correction can be performed using the proposed technology if the current in each phase varies.
- Q3:How did you determine the gain of the current sense amplifier?
- A3:The negative feedback control can suppress the current variation to (1 / loop gain). Even if the loop gain is made quite large, it is easy to keep stable, so we determined the value of gain by experiments.

Classifications of DC-DC Converter

