Automatic Notch Generation and Conversion Voltage Ratio Analysis in Pulse Coding Control Switching Converter

Yifei Sun, Minhtri Tran, Yasunori Kobori, Anna Kuwana, Haruo Kobayashi Gunma University Kobayashi Laboratory t172d004@gunma-u.ac.jp

- Introduction & Objective
- Conventional Switching Converter
- Pulse Coding Method in Switching Converter
- Full Automatic PWC^[1]Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

[1] PWC : Pulse Width Coding

- Introduction & Objective
- Conventional Switching Converter
- Pulse Coding Method in Switching Converter
- Full Automatic PWC Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

[2] EMI: Electro-Magnetic Interference

Research Objective

Research Summary

Proposed method

Pulse coding method

Design modulation circuit

⇒ generate notch frequency automatically

Achievement

Requency (Hz)

EMI reduction
 Noise removal
 Automatic generation of F_{notch}
 Conversion voltage ratio analysis

Information equipment switching power supply

- 1) Receiving weak radio waves
- ② Noise near receive frequency
 ⇒ automatically removed
- ③ Receive frequency change

⇒ Notch frequency automatically change

feature

- Introduction & Objective
- Conventional Switching Converter
- Pulse Coding Method in Switching Converter
- Full Automatic PWC Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

Spread Spectrum Using Pseudo Analog Noise

9/32

Spread Spectrum for EMI Reduction

PWM signal spectrum with EMI reduction

Simulation conditions
 Input : 12V
 Output : 6V
 Clock frequency : 200kHz

Without EMI reduction

 \succ Noise \Rightarrow basic and harmonic frequencies

Bottom level: 1mV

With EMI reduction

Peak level ⇒ reduced a lot

Noise : concentrated by diffusion

No good

Bottom level : 10mV

around the received frequency

- Introduction & Objective
- Conventional Switching Converter
- Pulse Coding Method in Switching Converter
- Full Automatic PWC Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

Diffuse Noise to Specific Frequency

Problem

Noise diffusing uniformly (analog modulation)

Digital modulation

Frequency band where noise does not spread

Frequency (Hz)

Notch band created in important frequency band

- - EMI Reduction• Control of diffused noise

^oower [dB]

Pulse Width Coding in Switching Converter

SEL High
MUX select V_H
Generate pulse with wide width in comparator

SEL Low

13/32

- (1) MUX select V_L
- ② Generate pulse with narrow width in comparator

[4] W_H : Wide width of PWM signal (High duty ratio) W_L : Narrow width of PWM signal (Low duty ratio)

Simulation Condition

Simulation Result with PWC Control

Design clock pulse to determine the notch frequency F_n

★ manually set WL and WH (without feedback)

$$F_{n} \cong N \times \frac{1}{(W_{H} - W_{L})} [N = 1, 2, 3, \cdots, n]$$
$$= N \times \frac{1}{1.6 \mu s - 0.2 \mu s} = 0.71 \text{MHz}$$

PWM signal spectrum using PWC control

15/32

- Introduction & Objective
- Conventional Switching Converter
- Pulse Coding Method in Switching Converter
- Full Automatic PWC Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

Automatic PWC Controller

PWC Pulse with Clock Frequency F_{ck} and Notch Frequency F_n

Automatic Pulse Generation

Simulation Waveforms of W_H , W_L Generation

 \implies Automatic generated $F_{ck} = 500 kHz$ $F_{in} = 750 kHz$ T_{ck} compare with VL or VH 2.5 Tck=1.99µs Tin=1.33µs > -0.35μ W_L Time/mSec1.01 1.01 1.01 1.01 1.02 S Simulation⁴waveform of Tck and Tin Theoretical formula $W_{H} = 1.66 \mu s$ $W_L = 0.32 \mu s$ 67u W_H Well Experimental result matched Time/mSecs1.006 1.008 1.01 1.012 1.014 1.016 Simulation waveform of W_H and W_L $W_{H} = 1.67 \mu s$ $W_{I} = 0.35 \mu s$

Noise Spectrum of PWC Signal

 $F_{in} = (N + 0.5)F_{ck}$

Best position : Fck < Fn < 2Fck N=1 Fin=750kHz \Rightarrow Fck=500kHz (W_H=1.66µs, W_L=0.32µs)

Simulated spectrum with EMI reduction

Assume to suppress influence on AM in 750kHz $F_{in} = 750 kHz \Rightarrow F_{notch} = 750 kHz$

Automatic PWC Controller

★ When F_{in} change, F_{ck} , W_H & W_L automatically change Fck=Fin·(2/3), W_H , W_L = Do·Tck±Tin/2 (when Do=0.5) Fin1=750kHz \Rightarrow Fck=Fin·(2/3)=500kHz Tck= 2.0 us, W_H , W_L = 1.00us±0.67us Fin2=1,250kHz \Rightarrow Fck=Fin·(2/3)=833kHz Tck= 1.2 us, W_H , W_L = 0.60us±0.40us

Automatic Notch Frequency Shift

- Step response with input frequency change Change F_{in} to 750kHz and 1250kHz at every 1 sec
- * Output voltage ripple:
- Stable output voltage ripple: ∠Vo=2.4mVpp@Io=0.5A
- Overshoot/undershoot : ∠Vs=5.0mV @Fin=750k⇔1,250kHz
- * Simulated Spectrum of PWC signal: (Left) Fin =750kHz, (Right) Fin =1,250kHz

- Introduction & Objective
- Conventional Switching Converter
- Pulse Coding Method in Switching Converter
- Full Automatic PWC Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

Necessity of Conversion Voltage Ratio Analysis

Conversion voltage ratio : $D_o = \frac{V_o}{V_i}$ Duty of SEL signal (high and low ratio) : D_s

The duty of
$$W_H$$
: $D_H = \frac{W_H}{T_{ck}}$

25/32

Conversion Voltage Ratio Shift Situation

Cause of D_o shift 0.57 0.55 (2) $\Delta D_H = D_H - D_o \neq D_o - D_L = \Delta D_L$ 0.53 $W_H = D_o T_{ck} + \frac{T_{in}}{2} \Rightarrow D_H = (Do + \Delta Do) + \Delta D_H$ 0.51 0.49 $W_L = D_o T_{ck} - \frac{T_{in}}{2} \Rightarrow D_L = (Do + \Delta Do) - \Delta D_L$ 0.47 0.45 Here $\Delta D_H = \Delta D_I = (\text{Tin}/2)/\text{Tck} = 1/3$ * Average of SEL Duty : $D_A(\alpha) = \alpha D_H + (1 - \alpha) D_I$ $= \alpha (Do + \Delta Do + \Delta D_H) + (1 - \alpha)(Do + \Delta Do - \Delta D_I)$ $= (Do + \Delta Do) + \alpha \Delta D_H - (1 - \alpha) \Delta D_L$ * According above equation, Let SEL duty: $D_A(\alpha) = 0.5$ $\Delta Do = 0 \& \alpha \Delta D_H - (1-\alpha) \Delta D_I = 0$ $\Rightarrow \Delta D_H = \Delta D_I \& \alpha = 0.5$ * In $\Delta D_H \neq \Delta D_L$ situation To be $\alpha \Delta D_H - (1 - \alpha) \Delta D_L = 0$ $\alpha = 1/(1+x)$ Here $x = \Delta D_H / \Delta D_L$ Only in this ratio, SEL duty changes, like the right graph

 $X = \Delta D_H / \Delta D_L$ Relationship between $\Delta D_H / \Delta D_L$ and α

Relationship between Average of SEL Duty $D_A(\alpha)$ and Output Ripple

- * Cause of D_o shift (1) D_o shift $\Rightarrow D'_o = D_o + \Delta D$ (2) $\Delta D_H = D_H - D_o \neq D_o - D_L = \Delta D$
 - * Automatic generation of W_H and W_L $W_H = D_o T_{ck} + \frac{T_{in}}{2} \Rightarrow D_H = Do + 1/3$ $W_L = D_o T_{ck} - \frac{T_{in}}{2} \Rightarrow D_L = Do - 1/3$ $\therefore (Tin/2)/Tck = 1/3$
- * Duty of SEL signal : $D_S = \alpha$

• When Vin changes, actually D'_o shifts after the circuit has been designed

* Average of SEL Duty :

$$D_A(\alpha) = \alpha D_H + (1 - \alpha) D_L$$

 $= \alpha (Do + 1/3) + (1 - \alpha) (Do - 1/3) D'_o = V_o/V_i(1 + \beta) \Rightarrow (1 - \beta) \cdot V_o/V_i = (1 - \beta) \cdot D_c$
 $= Do + (2\alpha - 1)/3$

* To set $D_A(\alpha) = Do$, α should be 0.5. Then, average voltage of SEL signal will be $\frac{V_{cc}}{2}$. Influence: output voltage ripple

Influence of Input Voltage Change

28/32

 \star D_o shift \Rightarrow output voltage ripple effected & become bigger

D_o Setting Method

The relationship between T_{in} and D_o (N=1) $D_o T_{ck} + \frac{T_{in}}{2} < T_{ck}$ $D_o T_{ck} - \frac{\overline{T_{in}}}{2} > 0$ $0.33 < D_o < 0.67$ $T_{ck} = 1.5T_{in}$ Consider about: $D_{o4} = \frac{V_o}{V_i} = \frac{5}{7} = 0.71 \qquad \Longrightarrow \qquad \boxed{\begin{array}{c} D_H = D_{o4} + \Delta D > 1 \\ \Rightarrow D_H = 1 \\ D_L = D_{o4} - \Delta D \end{array}}$

29/32

- Introduction & Objective
- Conventional Switching Converter
- Pulse Coding Method in Switching Converter
- Full Automatic PWC Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

Conclusion and Future Work

Conclusion

For EMI problem handling in switching power converter

- Developed pulse coding control in order to generate notch characteristics at desired frequency
- Automatic generate the F_{notch} from F_{in}
- Conversion voltage ratio D_o between 0.33 and 0.67 can let the select signal keep in balance

Future work

 Implementation of automatic PWC control switching converter

Thank you for Listening

Q: According to the spectrum of PWC signal, the frequency of F_n and $4F_n$ can generate notch, why does $2F_n$ and $3F_n$ not generate notch? A: I do not know the reason yet. I am thinking about this question.

- Q: In your research, you change frequency from F_{in1} to F_{in2} , in this time, it will create notch?
- A: The notch was created at input frequency. If we input F_{in1} , the notch will create at F_{in1} , if the input is F_{in2} , the notch will create at F_{in2} . If the communication of channel 1 is not good, the frequency of channel 2 is switched. At this time, the clock frequency and the coding pulse width are switched so that the notch frequency is automatically switched to the reception frequency. An indication of frequency switching and output ripple was displayed to indicate transient response.