A2-5 17:09 Xi' An + Dalian Room October 30, 2019 2019 13th IEEE International Conference on ASIC

Frequency Estimation Sampling Circuit Using Analog Hilbert Filter and Residue Number System

Yudai Abe, Shogo Katayama, Congbing Li, Anna Kuwana, Haruo Kobayashi

Division of Electronics and Informatics Gunma University

Kobayashi Laboratory

Kobayashi Lab. Gunma University

- 1. Research Background and Goal
- 2. Chinese Remainder Theorem
- 3. Proposed Waveform Sampling Circuit
- 4. Simulation Verification
- 5. Summary and Challenge

1. Research Background and Goal

- 2. Chinese Remainder Theorem
- 3. Proposed Waveform Sampling Circuit
- 4. Simulation Verification
- 5. Summary and Challenge

Research Background

Next Generation Communication System "5G"

Our Research Goal

Estimate high-frequency input signal with multiple low-frequency clock sampling circuits

High-frequency sampling circuit is difficult to realize

Our Approach :

Sampling high frequency signal with multiple low frequency clocks

Use Aliasing proactively

1. Research Background and Goal

2. <u>Chinese Remainder Theorem</u>

- 3. Proposed Waveform Sampling Circuit
- 4. Simulation Verification
- 5. Summary and Challenge

Chinese Remainder Theorem

Sun Tzu calculation

How to use the Chinese remainder theorem^{8/25}

He used to quickly find out how many soldiers there are.

Sun Tzu

How to use the Chinese remainder theorem^{9/25}

He used to quickly find out how many soldiers there are.

How to use the Chinese remainder theorem

He used to quickly find out how many soldiers there are.

How to use the Chinese remainder theorem

He used to quickly find out how many soldiers there are.

Example of Residue Number System

$$23 \% 3 = 2$$
, $23 \% 5 = 3$, $23 \% 7 = 2$

- Natural numbers
 3, 5, 7 (relatively prime)
 N=3×5×7=105
- k (0 <= k <= N-1 (=104))
- a : Remainder of k dividing by 3a=mod3(k)b : Remainder of k dividing by 5b=mod5(k)c : Remainder of k dividing by 7c=mod7(k)

k (a, b, c)

one to one

Chinese remainder theorem

а	b	С	k
0	0	1	15
1	1	2	16
2	2	3	17
0	3	4	18
1	4	5	19
2	0	6	20
0	1	0	21
1	2	1	22
2	3	2	23
0	4	3	24
1	0	4	25
2	1	5	26
0	2	6	27
1	3	0	28
2	4	1	29

Residue number system

- 1. Research Background and Goal
- 2. Chinese Remainder Theorem
- 3. Proposed Waveform Sampling Circuit
- 4. Simulation Verification
- 5. Summary and Challenge

Aliasing Phenomenon

Complex FFT of $j \times sin(2\pi f_{in}t)$

Complex FFT of $\cos(2\pi f_{in}t) + j \times \sin(2\pi f_{in}t)^{\frac{16}{25}}$

How Generate $j \times \sin(2\pi f_{in}t)$

Generate in-phase and quadrature waves from a single cosine wave

Proposed Sampling Circuit

- 1. Research Background and Goal
- 2. Chinese Remainder Theorem
- 3. Proposed Waveform Sampling Circuit
- 4. Simulation Verification
- 5. Summary and Challenge

Simulation Settings

Complex FFT

- Input frequency : 12 GHz
- Frequency resolution : 1 kHz
- Sampling frequency : 229 kHz, 233 kHz, 239 kHz (Relatively prime)
- Range of measurement : 0~2080622 kHz
 (Note: 229 × 233 × 239 = 2080623)

Measurement at 20 GHz using sampling frequencies of \Rightarrow 200 kHz

Simulation Results

Complex FFT : $cos(2\pi f_{in}t) + j \times sin(2\pi f_{in}t)$ • Input frequency : 12 GHz • Frequency resolution : 1 kHz

• Sampling frequency : 229 kHz 233 kHz 239 kHz

Frequency Estimation by Residue Number System^{22/25}

Input frequency estimation using residue frequencies and residue number system

Estimate input frequency 12GHz

a [kHz]	b [kHz]	c [kHz]	k [kHz]
0	0	0	0
1	1	1	1
2	2	2	2
ł		ł	ł
169	77	47	11999998
170	.3	48	11999999
171	34	49	12000000
172	35	50	120 <mark>()</mark> 001
173	36	51	12′ <mark>J</mark> 0002
	ł		:
226	230	255	12752320
227	201	237	12752321
228	232	238	12752322

Simulation Result Overview

- 1. Research Background and Goal
- 2. Chinese Remainder Theorem
- 3. Proposed Waveform Sampling Circuit
- 4. Simulation Verification
- 5. Summary and Challenge

Summary and Challenge

Summary

- Proposed a method to estimate high-frequency signal using multiple low-frequency sampling circuits.
- Confirmed its operation by theory and simulation.
- Measurable range is wide: proportional to multiplication of multiple sampling frequencies.

Challenge

• Estimated input frequency is discrete

Consider estimation with fine frequency resolution

Thank you for your attention