High-Resolution Low-Sampling-Rate ΔΣ ADC Linearity Short-Time Test Algorithm

Jiang-Lin Wei, N. Kushita, T. Arai, L. Sha, A. Kuwana, H. Kobayashi, T. Nakatani, K. Hatayama *Gunma University*

K. Sato, T. Ishida, T. Okamoto, T. Ichikawa ROHM Semiconductor

Gunma University Kobayashi Lab

OUTLINE

- Research background and objective
- Proposed linearity test method
- Simulation configuration and results
- Conclusion

OUTLINE

- Research background and objective
- Proposed linearity test method
- Simulation configuration and results
- Conclusion

Research Background

IOT (Internet of things)

Testing and evaluation of IOT devices are becoming important.

 Mass production shipment of IOT devices requires high quality and low cost testing.

Research Objective

High resolution, low speed $\Delta\Sigma$ ADC

- Sensor interface key components
- Mass production test
 - ✓ Linearity test takes a long time.
 - ✓ In most cases, it is omitted.

High reliability requirements

✓ Perform its linearity test in a short time✓ Develop its algorithm

ΔΣ ADC Testing Challenge

Sensor + amplifier + $\Delta \Sigma ADC$ + microcomputer

4 difficulties for its mass production shipping test.

Long test time

3 High linearity analog input signal

Complex ADC output signal processing

1 US dollar chip

Test time should be less than 1 second

ADC Role in Digital Era

$\Delta\Sigma ADC$

Linearity of $\Delta\Sigma$ ADC

Integral Non-Linearity: INL

If INL is large :

✓ Missing codes occur✓ Lack of monotonicity

Deviation between the ideal input threshold value and the measured threshold level of a certain output code.

OUTLINE

- Research background and objective
- Proposed linearity test method
- Simulation configuration and results
- Conclusion

Problem of Direct Linearity Test

Digital Filter Test

ΔΣ AD Modulator Test

I/O Characteristic Modeling of Modulator

Modeling by polynomial approximation

✓ Assumption: I/O characteristics are continuous in the AD modulator.

Polynomial Coefficient Estimation

Fundamental / 3rd Harmonic Power and 17/33 Polynomial Coefficients

OUTLINE

- Research background and objective
- Proposed linearity test method
- Simulation configuration and results
- Conclusion

Simulation Verification of Proposed Algorithm

Proposed $\Delta\Sigma$ ADC linearity test method

- Highly accurate estimation of polynomial coefficients from FFT values
- Modulator 1 bit data output of 2^{20} 2^{20} / (32 x 1000) = 32 seconds

- Test time drastically reduced
- 32 pieces are tested in parallel simultaneously, equivalent testing time per unit is 1 second.

3rd-order nonlinearity model

1st-order modulator

DC Input Simulation

DC Input Simulation Result

← k=0 ← k=0.0001 ← k=0.0005 ← k=0.001 ← k=0.005 ← k=0.01

k	a ₃	a ₁
0.0001	104.84	524180
0.0005	524.48	523760
0.0010	1050.5	523240
0.0050	5282.5	519000
0.0100	10643.0	513610

DC characteristic curve fitting

Cosine Input Simulation Configuration^{23/33}

Cosine Input Simulation Result

Find Spectrum Power from DC Characteristics

- 1st order modulator
- Number of 1-bit output data : N=2²⁰

By nonlinearity

Fundamental :
$$a_1A + \frac{3}{4}a_3A^3$$

3rd harmonic : $\frac{1}{4}a_3A^3$
A : amplitude

k	a ₃	a ₁
0.0001	104.84	524180
0.0005	524.48	523760
0.0010	1050.5	523240
0.0050	5282.5	519000
0.0100	10643.0	513610

Q1=0.0001 — Q1=0.0005 — Q1=0.001 — Q1=0.005 — Q1=0.01

3rd harmonic estimation value

Q3=0.0001 Q3=0.0005 Q3=0.001 Q3=0.005 Q3=0.01

2019/11/8

N=2²⁰ Comparison Between Estimated and FFT Values

N=2²⁰ Accurate Estimation Condition for 3rd Harmonic

k=0.0005

k=0.0001

k=0.01

1st -order modulator

Good condition 3rd harmonic

Amplitude = 0.9Error = 0.0123%(k = 0.0005)

^{N=2²⁰} Comparison of 1st and 2nd -order Modulators

1st -order modulator

2nd -order modulator

DUT Measurement Result

Measurements results from Rohm semiconductor company

Use of NI PXI system for experiment Obtained INL prediction with the proposed method

OUTLINE

- Research background and objective
- Proposed linearity test method
- Simulation configuration and results
- Conclusion

Conclusion

- High resolution, low speed ΔΣ ADC linearity short time testing algorithm
- Polynomial modeling of modulator input / output characteristics
- ✓ FFT of modulator 1-bit output stream for cosine input
- Estimate polynomial coefficients
 from fundamental and harmonic powers
- Verified by simulation and experiments that the proposed method is feasible.

Drastic testing time reduction: 104days => 32 seconds

Consideration of the followings:

- Higher-order distortions
 - High-order polynomial modeling
- Application to high-order modulators
- Application to multi-bit modulators

No Science without Measurement

Lord Kelvin

Kelvin PNP

No Production without Testing

Thanks for listening!

34/33

2019/11/8

Appendix

DC Input Amplitude

Merits & Demerits of $\Delta\Sigma$ DAC

X Due to modulator nonlinearity by quantizer

DC small signal input

Limit cycle solution

< Features >

1 NOT sacrifice input range

2 NOT affect signal band, thanks to noise-shaping

③ Easily generate random signal.

<u>I published at ICSICT in 2018</u> <u>https://ieeexplore.ieee.org/document/8564958</u>

First-order modulator (3rd nonlinearity)

Sampling:18Bit A: 0.999 ~ 1 amplitude increase step: 0.0005

• k-0.0001 — k-0.0005 — k-0.001 — k-0.005 — k-0.01

First-order modulator (3rd nonlinearity)^{41/33}

First-order modulator

