C3-1 10:15-10:45 Oct. 31, 2019 (Thu) 2019 13th IEEE International Conference on ASIC Oct. 29 – Nov. 1, 2019, Chongqing, China

Invited Fine Time Resolution TDC Architectures -Integral and Delta-Sigma Types

<u>Haruo Kobayashi</u>, Kosuke Machida, Yuto Sasaki, Yusuke Osawa Pengfei Zhang, Lei Sha, Yuki Ozawa, Anna Kuwana

Gunma University

Gunma University Kobayashi Lab

Outline

- Research Background
- Integral-type TDC
 - Time Hold Circuit
 - Equivalent-Time Sampling
 - Integral TDC
 - Vernier Frequency TDC
- Delta-Sigma TDC for Phase Noise Measurement
- Conclusion

Outline

<u>Research Background</u>

- Integral-type TDC
 - Time Hold Circuit
 - Equivalent-Time Sampling
 - Integral TDC
 - Vernier Frequency TDC
- Delta-Sigma TDC for Phase Noise Measurement
 Conclusion

Time-to-Digital Converter

Time-to-digital converter (TDC) measures
 timing difference t₀ between t₁, t₂
 as a digital value D_{out}

TDC Application Examples

Inter-vehicular distance measurement

Satellite distance measurement

TDC architectures have been inspired by ADC architectures

Outline

Y. Ozawa, T. Ida, S. Sakurai, R. Jiang, R. Takahashi, H. Kobayashi, R. Shiota "SAR TDC Architecture for One-shot Timing Measurement," IEEE International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China (Nov. 2017)

Trigger Circuit

Output starts to oscillate at rising timing edge of input

 M. Nelson (Tektronics)
 "A New Technique for Low-Jitter Measurements Using Equivalent-Time Sampling Oscilloscope"
 Automatic RF Techniques Group 56th Measurement (Dec. 2000)

Track/Hold Circuit

Trigger Circuit Waveforms

10/77

T/H circuit

track mode

```
Vout= \cos(\omega t) \cos(\omega t) + \sin(\omega t) \sin(\omega t)
=\cos^2(\omega t) + \sin^2(\omega t)
=1
```

•hold mode

Vout= $\cos(\omega t) \cos(\omega t_0) + \sin(\omega t) \sin(\omega t_0)$ = $\cos(\omega(t-t_0))$

✗ trigger time:t₀

Time difference can be held !

11/77

Outline

Research Background

Integral-type TDC

- Time Hold Circuit
- Equivalent-Time Sampling
- Integral TDC

- Vernier Frequency TDC

Y. Sasaki, Y. Zhao, A. Kuwana, H. Kobayashi,
"Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System"
27th IEEE Asian Test Symposium, Hefei, Anhui, China (Oct. 2018) In a sampling oscilloscope,

a repetitive high-frequency waveform can be sampled with low-frequency sampling clock and reconstructed.

3 time-bases

- Coherent Sampling for periodic waveform
- Sequential Sampling for repetitive waveform, w/o pre-trigger function

③ Random Sampling for repetitive waveform, w/ pre-trigger function

Coherent Sampling

Finer time resolution than sampling clock period

Sequential Sampling

Random Sampling

Waveform Missing Phenomena

Toothless waveform appears

Waveform Sampling Condition

18/77

Waveform Missing Conditions

Sampling points move little \implies Requires long time

Our Proposed Optimal Condition

Sampling points disperse uniformly through measurement

Outline

Research Background
 Integral-type TDC

 Time Hold Circuit
 Equivalent-Time Sampling
 Integral TDC

 Random Sampling

Y. Sasaki, H. Kobayashi, "Integral-type Time-to-Digital Converter," IEEE 14th International Conference on Solid-State and Integrated Circuit Technology, Qingdao, China (Nov. 2018)

Proposed Integral TDC Principle (1/3)^{22/77}

Sampling a square wave with input time difference τ / reference period T duty cycle

$$\lim_{L\to\infty}\frac{K}{L}=\frac{\tau}{T}$$

Proposed Integral TDC Principle (2/3) ^{23/77}

Square wave duty cycle depends on input time difference τ

Proposed Integral TDC Principle (3/3) ^{24/77}

Acquiring more data improves time resolution

Proposed Integral TDC Configuration 25/77

Proposed Integral TDC Operation (1/3) ^{26/77}

STEP1: Holding the input time difference τ as phase difference

Proposed Integral TDC Operation (2/3) 27/77

STEP2: Making the square wave with τ / T duty cycle

Proposed Integral TDC Operation (3/3) ^{28/77}

STEP3: Counting the ratio of the sampling points

Simulation Result

Acquiring more data improves time resolution

29/77

Outline

Research Background

Integral-type TDC

- Time Hold Circuit
- Equivalent-Time Sampling
- Integral TDC

Sequential Sampling

- Vernier Frequency TDC

Z. Pengfei, K. Machida, Y. Sasaki, Y. Ozawa, A. Kuwana, H. Kobayashi "High Resolution Time-to-Digital Converter Using Integral Architecture and Vernier Oscillators"
5th Taiwan and Japan Conference on Circuits and Systems, Nikko, Japan (Aug. 2019)

K. Machida, Y. Ozawa, Y. Abe, H. Kobayashi,
"Time-to-Digital Converter Architectures Using Two Oscillators With Different Frequencies",
27th IEEE Asian Test Symposium, Hefei, Anhui, China (Oct. 2018)

Vernier Frequency TDC

What about using different frequencies ?

Start oscillation *f*1 at START edge *f*2 at STOP edge

Vernier Frequency TDC Operation

$$\mathbf{t}_0 = f(f_1, f_2, \text{ number of } \bigcirc \bigcirc \dots)$$

$$f_1 \doteq f_2$$
 Time $t' = \left| \frac{1}{f_2} - \frac{1}{f_1} \right|$ resolution

Usage of Different but Close Frequencies^{33/77}

Different frequencies \rightarrow Fine time resolution \iff Long measurement time Trade off

Design Tradeoff

Wide input time range

Long Measurement time

Proposed TDC Architecture

Logic Circuit for Time Measurement

36/77
D1 Sampling by D2

37/77

Counter & Update

Vernier Frequency TDC Simulation Result

39/77

Integral TDC Conclusion

40/77

- Time difference can be held with 2 trigger circuits
- Equivalent-time sampling
 - Random sampling
 - Integral TDC
 - Coherent sampling
 - Optimal sampling condition
 - Sequential sampling
 - ➡ Vernier frequency TDC

• Oscillators can be shared among multi-channel TDCs

Outline

Research Background Integral-type TDC Time Hold Circuit

- Equivalent-Time Sampling

Y. Osawa, D. Hirabayashi, N. Harigai , H. Kobayashi, K. Niitsu, O. Kobayashi "Phase Noise Measurement Techniques Using Delta-Sigma TDC", IEEE International Mixed-Signals, Sensors and Systems Test Workshop Porto Alegre, Brazil (Sept. 2014).

Delta-Sigma TDC

for Phase Noise MeasurementConclusion

- Research Background & Objective
- Delta-Sigma TDC
- Phase Noise Measurement using ΔΣΤDC with Reference Clock
- Phase Noise Measurement using ΔΣΤDC without Reference Clock
 - Self-Referenced Clock Technique
- Conclusion

Outline

- <u>Research Background & Objective</u>
- Delta-Sigma TDC
- Phase Noise Measurement using ΔΣΤDC with Reference Clock
- Phase Noise Measurement using ΔΣΤDC without Reference Clock
 - Self-Referenced Clock Technique
- Conclusion

Phase noise of clock can cause malfunctions of electronic systems

44/77

Electronic system performance degradation

- RF circuit & system
- ADC

Test & measurement for phase noise, jitter is important

Conventional Method

Conventional Phase Noise Measurement

Expensive : Spectrum Analyzer
 Long testing time: ~10 seconds

Low cost, high quality phase noise measurement

46/77

w/o Spectrum Analyzer

- Research Background & Objective
- <u>Delta-Sigma TDC</u>
- Phase Noise Measurement using ΔΣΤDC with Reference Clock
- Phase Noise Measurement using ΔΣΤDC without Reference Clock
 - Self-Referenced Clock Technique
- Conclusion

Phase Noise Measurement Flow

48/77

CUT : Clock Under Test

Proposed Method

Time resolution improved by longer measurement time

Ex: $\tau = 1$ ns, N_{DATA} = 64K T_resolution = 0.03ps **TDC : Time-to-Digital Converter**

$$T_{resolution} \propto \frac{2\tau}{time}$$

Principle of $\Delta\Sigma TDC$

ΔΣΤDC Configuration

- Research Background & Objective
- Delta-Sigma TDC
- Phase Noise Measurement using ΔΣΤDC with Reference Clock
- Phase Noise Measurement using ΔΣΤDC without Reference Clock
 - Self-Referenced Clock Technique
- Conclusion

Principle of Phase Noise Measurement 53/77

Mathematical Analysis

54/77

 $\tau(m): \quad \text{m-th zero-crossing point variation function (noise component)} \\ \therefore \phi(mT) = -2\pi f_{in}\tau(m) \text{ : phase noise (time domain)} \\ \text{In case of sinusoidal phase fluctuation} \\ \tau(m) = T \cdot \alpha_j \cdot \sin(\omega_j mT) \qquad 0 \le \alpha_j \le 1 \\ \phi(mT) = -2\pi\alpha_1 \cdot \sin(\omega_1 mT) \text{ : phase noise (time domain)} \\ 1 \qquad 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ \text{Image of sinusoidal phase noise (time domain)} \\ 1 \qquad n = 1 \\ 1$

$$\Phi(\omega_1) = \frac{1}{2} (2\pi\alpha_1)^2$$
 : phase noise (freq. domain)

MATLAB Simulation

55/77

Simulation Conditions

• CLK:

Input freq. = 1 MHz ($T = 1 \mu s$)

Phase variation (sinusoidal)

- Phase noise frequency : $f_i \implies \text{varied}$
- Jitter variation :

$$-0.1 \mu s \le au_0 \le 0.1 \mu s \ (=rac{T}{10})$$

 Number of data: 4096

Simulation Conditions

Simulation Results (1)

W/O Phase Noise

Simulation Results (2)

Simulation Results (3)

Phase noise: 10kHz & 50kHz

60/77

- Research Background & Objective
- Delta-Sigma TDC
- Phase Noise Measurement using ΔΣΤDC with Reference Clock
- Phase Noise Measurement using ΔΣΤDC
 without Reference Clock
 - <u>Self-Referenced Clock Technique</u>
- Conclusion

Problem of Proposed Method I

Self-Referenced Phase Noise Measurement Method 63/77

- No need for jitterless reference clock
- β T-delay: β is not required to be an integer.

Proposed Methods I & II

Mathematical Analysis

65/77

$$\tau(m+1) - \tau(m) + (\beta - 1)T$$

= $T \cdot \alpha_1[sin(\omega_1 (m+1)T) - sin(\omega_1 \cdot mT)] + (\beta - 1)T$
= $2T \cdot \alpha_1 sin(\omega_1 T/2) cos(\omega_1 (m+1/2)T) + (\beta - 1)T$

(1)

Mathematical Analysis

(1) $\tau(m) = T \cdot \alpha_j \cdot \sin(\omega_j mT)$ In case of sinusoidal phase variation

 $0 \le \alpha_j \le 1$

66/77

phase noise (time domain)

 $\therefore \phi'(mT) = 2T \cdot \alpha_1 \sin(\omega_1 T/2) \cos(\omega_1 (m+1/2)T)$

phase noise (frequency domain)

$$\therefore \Phi'(\omega_1) = \frac{1}{2} (2\pi\alpha_1)^2 \left[2\sin 2(\omega_1 T/2)\right]^2$$
$$\cong \frac{1}{2} (2\pi\alpha_1)^2 \omega_1^2 T^2 \qquad (\because \omega_1 T/2 \ll 1)$$

 $ω_1$: phase noise freq. [low freq.]

T: input CLK period (=1/f)

phase noise power at ω₁

$$\Phi(\omega_1) = \frac{1}{2} (2\pi\alpha_1)^2$$

Simulation Conditions

67/77

Simulation Results 1 & 2

Phase noise:1kHz

Simulation Results 3&4

69/77

Phase noise: 100kHz

70/77 **Comparison of Theory and Simulation Results**

Phase variation frequency [kHz]

Theoretical expression

$$\Phi'(\omega_1) = \frac{1}{2} (2\pi\alpha_1)^2 \omega_1^2 T^2$$

Simulation Conditiions

71/77

Simulation Results (delay β variation) 72/77

$\beta = 0.95$ (error -5%)

Simulation Results (delay β variation) ^{73/77}

β = 0.95 (error -5%)

- Research Background & Objective
- Delta-Sigma TDC
- Phase Noise Measurement using ΔΣΤDC with Reference Clock
- Phase Noise Measurement using ΔΣΤDC without Reference Clock
 - Self-Referenced Clock Technique
- <u>Conclusions</u>

Proposal of two phase measurement techniques with $\Delta\Sigma TDC$

- Low cost testing without requiring spectrum analyzer
- On-chip high-precision phase noise measurement
- Fine time resolution measurement possible with $\Delta\Sigma TDC$
- Phase noise power spectrum obtained by FFT of TDC digital output

1MHz carrier (clock), 64K TDC output data Phase noise power spectrum of 0 to 0.5MHz away from 1MHz with 15.2Hz resolution.

MATLAB simulation verification

- Verified by superimposing several sinusoidal phase variation components
- Compared theoretical analysis and simulation results
- Self-referenced clock method with several β delay coefficient values

Outline

Research Background Integral-type TDC - Time Hold Circuit Equivalent-Time Sampling - Integral TDC - Vernier Frequency TDC Delta-Sigma TDC for Phase Noise Measurement

• <u>Conclusion</u>

Conclusion

77/77

Time continues indefinitely

Dynamic range of time domain signal processing can be very wide.

Time is GOLD !!

TDC is the key.

Kobayashi Laboratory