Systematic Construction of Resistor Ladder Network for N-ary DACs

Manato Hirai1, Shuhei Yamamoto1, Hirotaka Arai1, Anna Kuwana1, Hiroshi Tanimoto2, Yuji Gendai1, Haruo Kobayashi1

1 Gunma University
2 Kitami Institute of Technology,
Outline

• Research objective
• Current division with resistor ladder
• N-ary DAC configurations
 – Ternary DAC
 – Quaternary DAC
• Verification by SPICE simulations
• Conclusion and Future work
• Research objective
• Current division with resistor ladder
• N-ary DAC configurations
 – Ternary DAC
 – Quaternary DAC
• Verification by SPICE simulations
• Conclusion and Future work
Objective

R-2R ladder
- Binary weighted
 1-stage increment,
 1-bit increment

Derive \textit{N}-ary DAC

- Generalized configuration of R-2R DAC
 - Ternary DAC
 - Quaternary DAC
Outline

• Research objective
• Current division with resistor ladder
• N-ary DAC configurations
 – Ternary DAC
 – Quaternary DAC
• Verification by SPICE simulations
• Conclusion and Future work
Current Division with Resistor Ladder

- **R-2R ladder**
 - Divide current into 1 : 1 at each node

- **R-r ladder**
 - Converges to

 \[Z = \frac{R + \sqrt{R(R + 4r)}}{2} \]

Infinite R-2R ladder

Infinite R-r resistor ladder
Current Division by R-r Ladder

\[Z = \frac{R}{2} + \frac{\sqrt{R(R+4r)}}{2} \]

\[I_r : I_Z = Z : r \]

Define \(I_r : I_Z \equiv N - 1 : 1 \)

Ratio of \(R \) to \(r \)

\[\frac{R}{r} = \frac{(N - 1)^2}{N} \]
Ladder Termination with R_T

- Terminate infinite ladder with R_T

$$R_T = Z - R = \frac{R}{N - 1}$$

Resistance Ratio

$$R : r : R_T = (N - 1)^2 : N : N - 1$$
Outline

• Research objective
• Current division with resistor ladder
• N-ary DAC configurations
 – Ternary DAC
 – Quaternary DAC
• Verification by SPICE simulations
• Conclusion and Future work
Configuration of N-ary DACs

- Stage number k
- Injected currents I_1, \ldots, I_K
- Normalizing resistance value R_0
- Current division ratio $\Rightarrow N - 1 : 1$
Theoretical output voltage

- **Output voltage**

\[V_{OUT}(I_1, \cdots, I_K, R_0, N, K) = R_0 \frac{N(N - 1)}{N + 1} \sum_{k=1}^{K} \left(\frac{I_k}{N^{K-k}} \right) \]

- **Maximum output voltage**

\[V_{MAX}(I, R_0, N, K) = R_0 I \frac{N(N - 1)^2}{N + 1} \left(1 - \frac{1}{N^K} \right) \]

- **Minimum voltage step**

\[V_{\text{min}}(I, R_0, N, K) = R_0 I \frac{N - 1}{(N + 1)N^{K-2}} \]

- **Definitions:**
 - \(K \): Number of total stages
 - \(I_k \): Injected currents \(I_1, \cdots, I_K \)
 - \(R_0 \): Normalizing resistance value
 - \((N - 1) \): \(1 \): Current division ratio
$N = 2, \text{ R-2R DAC}$

- $N = 2, \text{ R-2R DAC}$
 - Number of total stages $K = 5 \rightarrow 5$-bit

\[
V_{OUT}(I_1, I_2, I_3, I_4, I_5, R_0) = R_0 I \cdot \frac{2}{3} \left(I_5 + \frac{1}{2^1} I_4 + \frac{1}{2^2} I_3 + \frac{1}{2^3} I_2 + \frac{1}{2^4} I_1 \right)
\]
\(N = 3 \), Ternary DAC

- **Resistance ratio**
 \[R : r : R_T = 4R_0 : 3R_0 : 2R_0 \]
- **Number of stages**
 \(K = 4 \)
- **Number of minimum voltage steps**
 \[N^K - 1 = 3^4 - 1 = 80 \text{ steps} \]
- **Output voltage**
 \[
 V_{OUT}(I_1, I_2, I_3, I_4, R_0) = R_0 \cdot \frac{3}{2} \left(\frac{1}{3^1} I_4 + \frac{1}{3^2} I_3 + \frac{1}{3^3} I_2 + \frac{1}{3^3} I_1 \right)
 \]

Each \(I_k \) is ternary weighted.
\(N = 4, \text{ Quaternary DAC} \)

- Resistance ratio
 \(R : r : R_T = 9R_0 : 4R_0 : 3R_0 \)
- Number of stages
 \(K = 4 \)
- Number of minimum voltage steps
 \(N^K - 1 = 4^4 - 1 = 255 \text{ steps} \)
- Output voltage
 \[
 V_{OUT}(I_1, I_2, I_3, I_4, R_0) = R_0 \cdot \frac{12}{5} \left(I_4 + \frac{1}{4^1} I_3 + \frac{1}{4^2} I_2 + \frac{1}{4^3} I_1 \right)
 \]
 Each \(I_k \) is quaternary weighted.
Outline

• Research objective
• Current division with resistor ladder
• N-ary DAC configurations
 – Ternary DAC
 – Quaternary DAC
• Verification by SPICE simulations
• Conclusion and Future work
Simulation of Ternary DAC

- Simulating input by switching current sources
- \(R_0 = 100 \, \Omega \), \(I = 13.77 \, \text{mA} \)
- Design value: \(V_{\text{MAX}} = 6.12 \, \text{V} \), \(V_{\text{min}} = 76.5 \, \text{mV} \)

Current source and switch

\[r_{\text{in}} = 1 \, \text{M}\Omega \]
\[r_{\text{off}} = 10 \, \text{G}\Omega \]
\[r_{\text{on}} = 1 \, \mu\Omega \]

80 steps
Simulation of Quaternary DAC

- Simulating input by switching current sources
- $R_0 = 100 \ \Omega$, $I = 6.40 \ \text{mA}$,
- Design value : $V_{MAX} = 6.12 \ \text{V}$, $V_{min} = 24.0 \ \text{mV}$

Current source and switch

\[r_{in} = 1 \ \text{M}\Omega \]
\[r_{off} = 10 \ \text{G}\Omega \]
\[r_{on} = 1 \ \mu\Omega \]

(a) Simulation result

(b) Enlarged plot

255 steps

23.99 mV
Outline

• Research objective
• Current division with resistor ladder
• N-ary DAC configurations
 – Ternary DAC
 – Quaternary DAC
• Verification by SPICE simulations
• Conclusion and Future work
Conclusion and Future work

- Our result
 - Generalize resistor ladder configurations including R-2R ladder
 - Proposal of N-ary DAC

- Future work
 - Devising effective usages of N-ary DAC
 - Less ladder stages, higher resolution
 - Voltage-mode configurations
Combined Resistance Value

\[Z_k = \frac{\alpha \gamma^k - \beta}{\gamma^k - 1} \]

Here,
\[\alpha = \frac{1}{2} \left(R + \sqrt{R^2 + 4rR} \right), \]
\[\beta = \frac{1}{2} \left(R - \sqrt{R^2 + 4rR} \right), \]
\[\gamma = \frac{R + r - \beta}{R + r - \alpha}, \quad 1 < \gamma \]

Convergence value:
\[Z_\infty = \frac{R}{2} + \frac{\sqrt{R(R + 4r)}}{2} \]