

Pulse Coding Control Switching Converter with Adjustable Conversion Voltage Ratio Notch Frequency Generation in Noise Spectrum

Yifei Sun, Minhtri Tran, Yasunori Kobori, Anna Kuwana, Haruo Kobayashi Gunma University Kobayashi Laboratory t172d004@gunma-u.ac.jp

- Introduction & Objective
- Pulse Coding Method in Switching Converter
- Automatic Notch Frequency Generation with Pulse Width Coding (PWC) Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

- Introduction & Objective
- Pulse Coding Method in Switching Converter
- Automatic Notch Frequency Generation with Pulse Width Coding (PWC) Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

[1] EMI: Electro-Magnetic Interference

Research Objective

Research Objective

Spread spectrum : EMI reduction & Noise diffusion

Full automatic notch frequency generation noise suppression near receive frequency

Proposed method Pulse coding method

Design modulation circuit & Conversion voltage ratio analysis ⇒ generate notch frequency automatically

- Introduction & Objective
- Pulse Coding Method in Switching Converter
- Automatic Notch Frequency Generation with Pulse Width Coding (PWC) Control
- Conversion Voltage Ratio Analysis

Conclusion and future work

Pulse Width Coding in Switching Converter

8-1 Switching converter with PWC control

[2] W_H : Wide width of PWM signal (High duty ratio) W_L : Narrow width of PWM signal (Low duty ratio) $D_H > D_o > D_L$ $D_o = V_o / V_{in}$ 7/26

Simulation Condition

Simulation Result with PWC Control

Design clock pulse to determine the notch frequency F_n

10-2 PWM signal spectrum using PWC control

Spread Spectrum for EMI Reduction

- Introduction & Objective
- Pulse Coding Method in Switching Converter
- Automatic Notch Frequency Generation with Pulse Width Coding (PWC) Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

Research Application

Information equipment switching power supply

- 1) Receiving weak radio waves
- ② Noise near receive frequency
 ⇒ automatically removed
- ③ Receive frequency change

⇒ Notch frequency automatically change

feature

Automatic PWC Controller

PWC Pulse with Clock Frequency F_{ck} and 14/26 Notch Frequency F_n

The relationship between F_n and PWC

$$F_n \cong N \times \frac{1}{(W_H - W_L)}$$

When $N = 1$
 $T_n \cong (W_H - W_L)$

 W_H and W_L Generated at the center of the original clock

$$T_o = D_o \times T_{ck} = \frac{V_o}{V_{in}} \times T_{ck}$$
$$W_L = T_o - T_p$$
$$W_H = T_o + T_p$$
$$T_n = W_H - W_L = 2 \times T_p$$

14-1 Timing chart of PWM signal

Automatic Pulse Generation

Simulation Waveforms of W_H , W_L Generation

 \implies Automatic generated $F_{ck} = 500 kHz$ $F_{in} = 750 kHz$ T_{ck} compare with VL or VH 2.5 Tck=1.99µs Tin=1.33µs > -0.35*u* W_L Time/mSec1.01 1.01 1.01 1.01 1.02 16-1 Simulation waveform of Tck and Tin Theoretical formula $W_{H} = 1.66 \mu s$ $W_L = 0.26 \mu s$ 67μ W_H Well Experimental result matched Time/mSecs1.006 1.008 1.01 1.012 1.014 1.016 16-2 Simulation waveform of W_H and W_L $W_{H} = 1.67 \mu s$ $W_{I} = 0.35 \mu s$

16/26

Noise Spectrum of PWC Signal

 $F_{in} = (N + 0.5)F_{ck}$

Fn=750kHz

N=1 Best position : Fck < Fn < 2Fck Fin=750kHz ⇒Fck=500kHz (W_{H} =1.66µs, W_{L} =0.26µs)

17-1 Simulated spectrum with EMI reduction

Assume to suppress influence on AM in 750kHz $F_{in} = 750kHz \Rightarrow F_{notch} = 750kHz$

- Introduction & Objective
- Pulse Coding Method in Switching Converter
- Automatic Notch Frequency Generation with Pulse Width Coding (PWC) Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

Necessity of Conversion Voltage Ratio Analysis

- Conversion voltage ratio : $D_o = \frac{V_o}{V_i}$
- Duty of SEL signal (high and low ratio) : D_s
- In ideal condition (D_o not shift) W_H : ($D_o + D_H$) $T_{ck} = D_o T_{ck} + \frac{T_{in}}{2} = (D_o + \frac{1}{3})T_{ck}$ W_L : ($D_o - D_L$) $T_{ck} = D_o T_{ck} - \frac{T_{in}}{2} = (D_o - \frac{1}{3})T_{ck}$ ($D_H = D_L = D_P$: shift value of D_o)

When D_o is accurate

19/26

Influence of Input Voltage Change

21-2 Change of output ripple

20/26

 D_o shift \Rightarrow output voltage ripple effected & become bigger

D_o Setting Method

The relationship between T_{in} and D_o (N=1)

$$W_{H}: D_{o}T_{ck} + \frac{T_{in}}{2} < T_{ck}$$

$$W_{L}: D_{o}T_{ck} - \frac{T_{in}}{2} > 0$$

$$T_{ck} = 1.5T_{in}$$

$$0.33 < D_{o} < 0.67$$

$$T_{ck} = 1.5T_{in}$$

$$W_{H} = T_{in}$$

$$W_{L} = 0$$

$$W_{H} = W_{L} = 0$$

$$W_{H} = W_{L} = 0$$

$$W_{H} = 1$$

$$W_{L} = 1 - T_{in}$$
This time:
$$F_{notch} \text{ shift, duty of SEL signal : } D_{s} \text{ also shift}$$

$$W_{L} = 0$$

$$W_{H} = 1$$

$$W_{L} = 1 - T_{in}$$

$$W_{L} = 1 - T_{in}$$

What should we do when D_o smaller than 0.33 or bigger than 0.67?

Method of Ripple Reduce in D_o Setting^{22/26}

The relationship between T_{in} and D_o (N=2)

$$W_{H}: D_{o}T_{ck} + \frac{T_{in}}{2} = (D_{o} + \frac{1}{5})T_{ck} < T_{ck}$$
$$W_{L}: D_{o}T_{ck} - \frac{T_{in}}{2} = (D_{o} - \frac{1}{5})T_{ck} > 0$$
$$T_{ck} = 2.5T_{in}$$

Early consider :

$$D_{o3} = \frac{V_o}{V_i} = \frac{5}{18} = 0.28$$

$$D_{o4} = \frac{V_o}{V_i} = \frac{5}{7} = 0.71$$

Simulation Result of PWM Signal When $N=2^{23/26}$

 $F_{in} = (N + 0.5)F_{ck} = 2.5F_{ck}$

N=2 Best position : 2Fck < Fn < 3Fck Fin=1.25MHz ⇒Fck=500kHz

24-2 Waveforms of select signal and output ripple

- Introduction & Objective
- Pulse Coding Method in Switching Converter
- Automatic Notch Frequency Generation with Pulse Width Coding (PWC) Control
- Conversion Voltage Ratio Analysis
- Conclusion and future work

Conclusion and Future Work

Conclusion

For EMI problem handling in switching power converter

- Developed pulse coding control in order to generate notch characteristics at desired frequency
- Automatic generate the F_{notch} from F_{in}
- Conversion voltage ratio D_o analysis and the improvement of conversion rate is designed

Future work

 Implementation of automatic PWC control switching converter Thank you for Listening

26/26