Analog Signal Generator for Irrational Number Approximation Based on Number Theory

Manato Hirai, Anna Kuwana, Haruo Kobayashi
Division of Electronics and Informatics
Gunma University
Outline

• Research objective
• R-r resistor ladder
 – Convergence resistance value
 – Metallic mean and $\sqrt{2}$ approximation ladder
• Resistor ladder with different resistance values
 – Correspondence
 • combined resistance and continued fraction
• Resistor network digital-to-analog converters
• Conclusion
Outline

• Research objective
• R-r resistor ladder
 – Convergence resistance value
 – Metallic mean and $\sqrt{2}$ approximation ladder
• Resistor ladder with different resistance values
 – Correspondence
 • combined resistance and continued fraction
• Resistor network digital-to-analog converters
• Conclusion
Research Objective

- On integrated circuit, resistance absolute value \rightarrow vary resistance ratio \rightarrow accurate

- Irrational number \Leftrightarrow continued fraction configured by integers

- By connecting resistors with integer ratio \rightarrow irrational number approximation ratio

- Generate irrational number approximation analog signal
Outline

• Research objective

• R-r resistor ladder
 – Convergence resistance value
 – Metallic mean and $\sqrt{2}$ approximation ladder

• Resistor ladder with different resistance values
 – Correspondence
 • combined resistance and continued fraction

• Resistor network digital-to-analog converters

• Conclusion
R-r Resistor Ladder

R-r resistor ladder network

Unit resistive ladder
Combined Resistance Value

- Increase the number of stages

\[Z_2 = R + \frac{r(R + r)}{r + (R + r)} \]

\[Z_{k+1} = R + \frac{rZ_k}{r + Z_k} \]

\[= \frac{(r + R)Z_k + rR}{Z_k + r} \]

Recurrence relation of \(Z_k \)
Combined Resistance Value

\[Z_k = \frac{\alpha \gamma^k - \beta}{\gamma^k - 1} \]

Here, \(\alpha = \frac{1}{2} \left(R + \sqrt{R^2 + 4rR} \right)\), \(\beta = \frac{1}{2} \left(R - \sqrt{R^2 + 4rR} \right)\), \(\gamma = \frac{R + r - \beta}{R + r - \alpha}\), \(1 < \gamma\)

Convergence value:

\[Z_\infty = \frac{R}{2} + \frac{\sqrt{R(R + 4r)}}{2} \]
Outline

• Research objective
• R-r resistor ladder
 – Convergence resistance value
 – Metallic mean and $\sqrt{2}$ approximation ladder
• Resistor ladder with different resistance values
 – Correspondence
 • combined resistance and continued fraction
• Resistor network digital-to-analog converters
• Conclusion
Metallic Mean λ

- Positive root of
 \[x^2 - nx - 1 = 0 \]
 \[\downarrow \]
 \[\lambda_n = \frac{n}{2} + \frac{\sqrt{n^2 + 4}}{2} \]

- Continued fraction expansion
 \[\lambda_n = n + \cfrac{1}{n + \cfrac{1}{n + \cfrac{1}{n + \cdots}}}. \]

- $n = 1$: golden ratio ϕ
 \[\phi = \frac{1 + \sqrt{5}}{2} \]

- $n = 2$: silver mean τ
 \[\tau = 1 + \sqrt{2} \]

- $n = 3$: bronze mean ξ
 \[\xi = \frac{3 + \sqrt{13}}{2} \]
R-r Ladder and Metallic Means

Resistance value of R-r ladder

\[Z_\infty = \frac{R}{2} + \frac{\sqrt{R(R + 4r)}}{2} \]

\[Z_{k+1} = R + \frac{rZ_k}{r + Z_k} \]

\[= \frac{R}{m} \left(m + \frac{1}{\frac{R}{mr} + \frac{R}{mZ_k}} \right) \]

\[= \frac{R}{m} \left(m + \frac{1}{\frac{R}{mr} + \frac{1}{m + \frac{1}{\frac{R}{mr} + \frac{1}{\ddots}}} \right) \]

Metallic mean

\[\lambda_n = \frac{n}{2} + \frac{\sqrt{n^2 + 4}}{2} \]

\[\lambda_n = n + \frac{1}{n + \frac{1}{\ddots}} \]

Combined resistance of R-r ladder

Metabolic mean ratio (irrational number)
\[Z_{R,R} = \frac{R}{2} + \frac{\sqrt{R(R + 4r)}}{2} \]
\[= \frac{1 + \sqrt{5}}{2} R \]

Golden ratio \(\phi \) ladder
2R-0.5R Resistor ladder

\[Z_{2R,0.5R} = \frac{2R}{2} + \frac{\sqrt{2R(2R + 4 \cdot 0.5R)}}{2} \]

\[= R + \frac{2\sqrt{2R^2}}{2} \]

\[= (1 + \sqrt{2})R \]

\[\approx 2.414R \]
2R-0.5R Resistor Ladder (Simulation)

• Simulation conditions
 – $R = 1$ kΩ
 – Supply 1 mA to ladder, calculate Z_3 from $V(\text{out})$
• Result
 $$Z_3 = 2.4142855 \text{ kΩ}$$
 $(1 + \sqrt{2} = 2.4142135623\ldots)$
2R-0.5R resistor ladder

- Simulation conditions
 - \(R = 1 \) kΩ
 - Supply 1 mA to ladder, calculate \(Z_5 \) from \(V(out) \)

- Result
 \[
 Z_5 = 2.4142135 \text{ kΩ}
 \]
 \[
 (1 + \sqrt{2} = 2.4142135623\ldots)
 \]
\[\sqrt{2} \text{ Approximation Ladder} \]

- \[\sqrt{2} = (1 + \sqrt{2}) - 1 \]
 \[= 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}} \]

- \[Z_{2R,0.5R} = (1 + \sqrt{2})R \]
 \[Z_{2R,0.5R} - R = \sqrt{2}R \]

Replace the first 2R resistor of 2R-0.5R ladder with R.
Verification of $\sqrt{2}$ Ladder, 2-Stage

- Simulation conditions
 - $R = 1$ kΩ
 - Supply 1 mA to ladder, calculate Z_2 from $V(\text{out})$
- Result
 $Z_2 = 1.41666666$ kΩ
 ($\sqrt{2} = 1.41421356237309\ldots$)
Verification of $\sqrt{2}$ Ladder, 5-Stage

- **Simulation conditions**
 - $R = 1$ kΩ
 - supply 1 mA to ladder, calculate Z_5 from $V(\text{out})$

- **Result**

 $Z_5 = 1.4142136$ kΩ

($\sqrt{2} = 1.41421356237309\ldots$)
Outline

- Research objective
- R-r resistor ladder
 - Convergence resistance value
 - Metallic mean and $\sqrt{2}$ approximation ladder
- Resistor ladder with different resistance values
 - Correspondence
 - combined resistance and continued fraction
- Resistor network digital-to-analog converters
- Conclusion
R-ladder with Different Resistance Values

Registence value of k-th stage → weighting by p_k and q_k

$$Z_k = p_k R + \frac{q_k R \cdot Z_{k-1}}{q_k R + Z_{k-1}}$$
R-ladder with Different Resistance Value

\[Z_k = p_k R + \frac{q_k R \cdot Z_{k-1}}{q_k R + Z_{k-1}} \]

\[= R \left(p_k + \frac{1}{\frac{1}{q_k} + \frac{R}{Z_{k-1}}} \right) \]

\[= R \left(p_k + \frac{1}{\frac{1}{q_k} + \frac{1}{p_{k-1} + \frac{1}{\frac{1}{q_{k-1}} + \ddots}}} \right) \]

Adjust \(p_k \) and \(q_k \) according to continued fraction of specified number

\[\text{Resistance ratio to } R \text{ is specified number} \]
Napier's Constant

- Irrational number
- Denoted by e
- Natural logarithm
- Continued fraction
 → regularity

\[
e = 2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \ddots}}}} = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, \ldots]
\]

\[
p_k \rightarrow \text{odd-numbered terms of integer part} \\
2, 2, 1, 1, 6, \ldots
\]

\[
q_k \rightarrow \text{reciprocals of even-numbered terms} \\
1, 1, 1/4, 1, 1, \ldots
\]
Approximation Ladder, 4-Stage

- Simulation condition
 - $R = 1$ kΩ
 - supply 1 mA to ladder, calculate Z_4 from $V(\text{out})$
- Result

 2.7183098 kΩ

\(e \approx [2; 1, 2, 1, 1, 4, 1, 1]\)
Approximation Ladder, 8-Stage

$e \approx [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1]$

- Simulation condition
 - $R = 1$ kΩ
 - supply 1 mA to ladder, calculate Z_8 from $V(\text{out})$

- Result
 - 2.7182816 kΩ
 - ($e = 2.718281828459536 \ldots$)
\[\pi \approx 3.14159 \]

\[= 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{7}}}} \]

\[= [3; 7, 15, 1, 25, 1, 7, 4] \]

- Irrational number
- Ratio of a circle's circumference to diameter
- Continued fraction → no regularity

\(p_k \rightarrow \) odd-numbered terms of integer part
\[3, 15, 25, 7 \]

\(q_k \rightarrow \) reciprocals of even-numbered terms
\[1/7, 1, 1, 1/4 \]
Simulation conditions:
- \(R = 700 \, \Omega \)
- Supply 1 mA to ladder and \(R \), calculate resistance ratio to \(R \) from the ratio of voltages

Result:
Ratio to \(R \): 3.1415896
(Design value: 3.14159)
Outline

• Research objective
• R-r resistor ladder
 – Convergence resistance value
 – Metallic mean and $\sqrt{2}$ approximation ladder
• Resistor ladder with different resistance values
 – Correspondence
 • combined resistance and continued fraction
• Resistor network digital-to-analog converters
• Conclusion
Resistor Network Digital-to-Analog Converters

\[A_{N-1} \]

\[A_{N-2} \]

\[A_2 = R + \frac{1}{\frac{1}{r} + \frac{1}{A_1}} \]

\[A_1 = R + R_T \]

\[A_n = R + \frac{1}{\frac{1}{r} + \frac{1}{A_{n-1}}} \]
Resistor Network Digital-to-Analog Converters

\[V_{OUT}(I_1, I_2, \ldots, I_N, R, r, R_T) = R_T \]

\[
\begin{aligned}
&\cdot I_N \cdot \frac{A_{N-1}}{A_{N-1} + R_T} + I_{N-1} \cdot \frac{r||A_{N-2}}{r||A_{N-2} + A_1} + \frac{r}{A_1 + r} \\
&\cdot I_{N-2} \cdot \frac{r||A_{N-3}}{r||A_{N-3} + A_2} + \frac{r}{A_2 + r}
\end{aligned}
\]
5-bit R-2R DAC

- R-2R DAC
 \[R \rightarrow R \]
 \[r \rightarrow 2R \]
 \[R_T \rightarrow R \]

For all \(n \),
\[A_n = 2R \]

\[
V_{OUT}(I_1, I_2, I_3, I_4, I_5, R) = R \left(I_5 \cdot \frac{2}{3} + I_4 \cdot \frac{1}{3} + \frac{1}{2} \cdot \left(I_3 \cdot \frac{1}{3} + \frac{1}{2} \cdot \left(I_2 \cdot \frac{1}{3} + \frac{1}{2} \cdot \left(I_1 \cdot \frac{1}{3} \right) \right) \right) \right)
\]

\[
= \frac{1}{3} R \left(2I_5 + I_4 + \frac{1}{2} I_3 + \frac{1}{4} I_2 + \frac{1}{8} I_1 \right)
\]

→ Currents \(I \) weighted in binary
Examples of Resistor network DAC

- **R-R network DAC**

\[
R \rightarrow R \\
r \rightarrow R \\
R_T \rightarrow R
\]

\[
V_{OUT}(I_1, I_2, I_3, I_4, I_5, R) = R \left(I_5 \cdot \frac{34}{55} + I_4 \cdot \frac{13}{55} + \frac{1}{3} \cdot \left(I_3 \cdot \frac{3}{11} + \frac{3}{8} \cdot \left(I_2 \cdot \frac{16}{55} + \frac{8}{21} \cdot \left(I_1 \cdot \frac{21}{55} \right) \right) \right) \right)
\]

\[
= \frac{1}{55} R \left(34I_5 + 13I_4 + 5I_3 + 2I_2 + I_1 \right)
\]

When \(I_1 \sim I_5 = (I, -I, 0) \)

→ **Operate as a DAC**
Examples of Resistor network DAC

- Weighted in “ternary”
 \[R \rightarrow 4R \]
 \[r \rightarrow 3R \]
 \[R_T \rightarrow 2R \]

For all \(n \),
\[A_n = 6R \]

\[
V_{OUT}(I_1, I_2, I_3, I_4, I_5, R) = 2R \left(I_5 \cdot \frac{6}{8} + I_4 \cdot \frac{2}{8} + \frac{1}{3} \cdot \left(I_3 \cdot \frac{2}{8} + \frac{1}{3} \cdot \left(I_2 \cdot \frac{2}{8} + \frac{1}{3} \cdot \left(I_1 \cdot \frac{2}{8} \right) \right) \right) \]
\[= \frac{1}{2} R \left(3I_5 + I_4 + \frac{1}{3} I_3 + \frac{1}{9} I_2 + \frac{1}{27} I_1 \right). \]

When \(I_1 \sim I_5 = (I, -I, 0) \),

⇒ Operate as a DAC
Outline

• Research objective
• R-r resistor ladder
 – Convergence resistance value
 – Metallic mean and $\sqrt{2}$ approximation ladder
• Resistor ladder with different resistance values
 – Correspondence
 • combined resistance and continued fraction
• Resistor network digital-to-analog converters
• Conclusion
Conclusion

• Clarified
 – R-r ladder network ⇔ some irrational numbers
 – By using continued fraction of specified number, equivalent resistor
 (resistance ratio to R is specified number)
 – Approximation accuracy
 → better, as the number of resistors larger

• Resistor network DAC
 – Generalized DAC using resistor ladder
 – New idea of Non-binary DACs
Q&A

• Q. You showed a ternary DAC on slide 32. Can you design a “Quaternary” DAC?
 A. Probably, we can. But I suppose a “Quaternary” DAC needs more current sources than ternary DAC.

• Q. Can you design the $\sqrt{2}$ weighted DAC?
 A. I’m not sure. Probably we can by using a $1 + \sqrt{2}$ ladder or other configuration of ladder.