International Conference on Technology and Social Science 2019 (ICTSS 2019) May 8-10, 2019 (Kiryu Japan)

Mathematical Analysis and Design of 4-Stage Passive RC Network in RF Front-End System

Minh Tri Tran^a, Nene Kushita^b, Anna Kuwana^c, and Haruo Kobayashi^d

Outline

- 1. Research Background
 - Applications of RC Poly-phase Network
 - Analog Complex Signal Processing Concepts
- 2. Analysis of 4-Stage Passive RC Network
 - Frequency Responses
 - Image Rejection Ratio
- 3. Proposed Model of 4-Stage Passive RC Network
 - Model of 4-Stage Passive RC Network
 - Simulation Results
- 4. Conclusions

Outline

- 1. Research Background
 - Applications of RC Poly-phase Network
 - Analog Complex Signal Processing Concepts
- 2. Analysis of 4-Stage Passive RC Network
 - Frequency Responses
 - Image Rejection Ratio
- 3. Proposed Model of 4-Stage Passive RC Network
 - Model of 4-Stage Passive RC Network
 - Simulation Results
- 4. Conclusions

1. Research Background Typical Applications of RC Poly-phase Network

Applications: Wi-Fi, WiMax, UWB, GSM, WCDMA, LTE, 4G, Cordless Phones, RFID, ZigBee, Bluetooth, TV Set Top Box, Sensing, Radar...

1. Research Background

Research Objective & Design Achievements

Objective

Design of Image Rejection Filter for Blue-tooth Receiver:

- Low image noise
- Simple Model of RC Network

Approach

Derivation of Transfer Function of 4-Stage Passive RC
 Network Based on Superposition Principle

Achievements

Mathematical Analysis of 4-Stage Passive RC Network

Image Rejection Ratio: -33dB

1. Research Background RFIC Design & Trade-offs

1. Research Background Modern Receiver Architectures

1. Research Background Frequency Plane of Low-IF Signals

1. Research Background

Wireless Communication Specifications

	Low Energy Bluetooth	Low Power (Wifi) (IEEE 802.11)	ZigBee (IEEE 802.15.4)
Frequency Range	2.402-2.482 GHz	2.40-2.50 GHz	2.402-2.482GHz
Discrete Channels	3	3	16
Max Channel Bandwidth	1~8 MHz	22 MHz	5MHz
Modulation	GFSK	QAM64	QPSK
Nominal Data-Rate	1 Mbps	1 Mbps	250 Kbps
Estimated Max Potential Data-Rate	1 Mbps	54 Mbps	500 Kbps
Nominal Range (0 dBm)	10 m	25 m	75m
Average Power for ten 256-byte massages per day	50uW	570 uW	414uW

1. Research Background Signal Bandwidth & Channel Bandwidth

1. Research Background Low-IF Receiver System Architecture

This Work

1. Research Background

Design Targets of Low-IF Receiver System

Parameter	LNA	Mixer	PPF	RSSI
Input RF frequency	2.4GHz	2.4GHz	5MHz	5MHz
LO frequency		2.405GHz		
Input RF Power	-85 dBm	-68dBm	-60dBm	-60dBm
LO Power		0 dBm		
NF	2dB	10 dB	10dB	10dB
Gain	17 dB	8dB	0dB	60dB
P1dB (input)	>-30dBm	> -10dBm		
Input referent IP3	>-20dBm	>0 dBm		
Current Consumption	< 5 mA	<10 mA	<5 mA	<5 mA
Supply Voltage	1.8 V	1.8 V	1.8 V	1.8 V
Image Rejection Ratio			< 30 dP	
IMRR			< -30 UD	

1. Research Background Superposition Principle

1. Research Background Example1 of Superposition Principle

$$V_{A} = \frac{V_{1}R_{2} + V_{2}j\omega R_{1}R_{2}C_{1} + V_{3}R_{1}}{(j\omega R_{1}C_{1} + 1)R_{2} + R_{1}}$$

1. Research Background Superposition Principle with Sub Branches

1. Research Background Example2 of Superposition Principle

1. Research Background Energy Propagation

- Energy Propagation Function:
- $E(d,t) = E_0 e^{-\alpha d} \cos(\omega t \beta d + \phi)$ Wavelength $\lambda = \frac{2\pi}{\beta} [m]$
- Lumped circuits: resistors, capacitors, inductors
 <u>heglect</u> time delays (phase)
- Distributed circuit elements: transmission lines
 <u>t</u> account for time delays (phase change)

1. Research Background

Some Properties of Hilbert Transforms

Hilbert Transforms Table1:

Name	Function	Positive-Hilbert	Negative-Hilbert
		Transform $(\omega > 0)$	Transform ($\omega < 0$)
Constant	С	0	0
Sine	$\sin(\omega t)$	$-\cos(\omega t)$	$\cos(\omega t)$
Cosine	$\cos(\omega t)$	$\sin(\omega t)$	$-\sin(\omega t)$
Exponential	e ^{jwt}	$-je^{j\omega t}$	je ^{jæt}
	$e^{-j\omega t}$	je ^{-jost}	$-je^{-j\omega t}$

• Negative Hilbert transform: $-\pi/2$ phase shift (-*j*) • Positive Hilbert transform: $+\pi/2$ phase shift (+*j*)

1. Research Background Complex Signals

• **Complex signal:** a set of two (or four) sources with the same frequency and 90-degree separated phase

Positive Complex Signal

$$S_{Pos_complex}\left\{V_{1}(t);V_{2}(t)\right\} = \begin{cases} A\cos(\omega t + \theta) \\ + jA\cos(\omega t + \theta) \end{cases}$$

Positive Hilbert transform

Negative Complex Signal

$$S_{Neg_complex}\left\{V_{1}(t);V_{2}(t)\right\} = \begin{cases} A\cos(\omega t + \theta) \\ -jA\cos(\omega t + \theta) \end{cases}$$

Negative Hilbert transform

1. Research Background Poly-phase Signals

- **Poly-phase signal = Complex signal (four sources)**
- Poly-phase filter = Complex filter

Positive Hilbert transform

Negative Hilbert transform

 $A\cos(\omega t + \theta)$

1. Research Background Phase Plane of Poly-phase Signals

1. Research Background Phase Plane of Received Signals

Outline

- 1. Research Background
 - Applications of RC Poly-phase Network
 - Analog Complex Signal Processing Concepts
- 2. Analysis of 4-Stage Passive RC Network
 - Frequency Responses
 - Image Rejection Ratio
- 3. Proposed Model of 4-Stage Passive RC Network
 - Model of 4-Stage Passive RC Network
 - Simulation Results
- 4. Conclusions

2. Analysis of 4-Stage Passive RC Network Design of 4-Stage Passive RC Network

Parameter	PPF
Input IF frequency	5MHz
Input IF Power	-60dBm
NF	10dB
Gain	0dB
Current	~5m A
Consumption	<pre>>JIIIA</pre>
Supply Voltage	1.8V
Image Rejection	< 20 dD
Ratio IMRR	<-30 ab

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages on 1st Loop

Here:

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages on 1st Loop

Voltages on 1st loop

$$\begin{cases} V_{A1} = V_{in1} \left(Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right) \frac{(R_{2} + Z_{C2}) \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] + 2R_{2}Z_{C2} \left(R_{3} + Z_{C3} + R_{4} + Z_{C4} \right) \right]}{\left\{ \left[2R_{1}Z_{C1} + (R_{1} + Z_{C1})(R_{2} + Z_{C2}) \right] \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \right\}} \right\} \\ V_{A2} = V_{in2} \left(Z_{C1} + \frac{V_{in1}}{V_{in2}} R_{1} \right) \frac{(R_{2} + Z_{C2}) \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] + 2R_{2}Z_{C2} \left(R_{3} + Z_{C3} + R_{4} + Z_{C4} \right) \right]}{\left\{ \left[2R_{1}Z_{C1} + (R_{1} + Z_{C1})(R_{2} + Z_{C2}) \right] \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \right\}} \right\} \\ V_{A3} = V_{in3} \left(Z_{C1} + \frac{V_{in2}}{V_{in3}} R_{1} \right) \frac{(R_{2} + Z_{C2}) \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right]}{\left\{ \left[2R_{1}Z_{C1} + (R_{1} + Z_{C1})(R_{2} + Z_{C2}) \right] \left[2R_{3}Z_{C3} + (R_{3} + Z_{C4}) \right] \right\}} + 2(R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] + 2R_{2}Z_{C2} \left(R_{3} + Z_{C3} + R_{4} + Z_{C4} \right) \right]} \\ V_{A3} = V_{in3} \left(Z_{C1} + \frac{V_{in2}}{V_{in3}} R_{1} \right) \frac{(R_{2} + Z_{C2}) \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right]}{\left\{ \left[2R_{1}Z_{C1} + (R_{1} + Z_{C1})(R_{2} + Z_{C2}) \right] \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \right\}} \\ V_{A4} = V_{in4} \left(Z_{C1} + \frac{V_{in3}}{V_{in4}} R_{1} \right) \frac{(R_{2} + Z_{C2}) \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right]}{\left\{ \left[2R_{1}Z_{C1} + (R_{1} + Z_{C1})(R_{2} + Z_{C2}) \right] \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \right\}} \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R_{1} + Z_{C1})R_{2}Z_{C2} + R_{1}Z_{C1} \left(R_{2} + Z_{C2} \right) \right]} \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R_{1} + Z_{C1})R_{2}Z_{C2} + R_{1}Z_{C1} \left(R_{2} + Z_{C2} \right) \right]} \right] \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R_{1} + Z_{C1})R_{2}Z_{C2} + R_{1}Z_{C1} \left(R_{2} + Z_{C2} \right) \right]} \\ \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R_{1} + Z_{C1})R_{2}Z_{C2} + R_{1}Z_{C1} \left(R_{2} + Z_{C2} \right) \right] \\ \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R_{1} + Z_{C1})R_{2}Z_{C2} + R_{1}Z_{C1} \left(R_{2} + Z_{C2} \right) \right]} \\ \\ \\ \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R$$

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages on 2nd Loop

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages on 2nd Loop

Voltages on 2nd loop

$$\begin{bmatrix} 2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \\ \hline [R_{2} + Z_{C2})[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4})] \\ + 2R_{2}Z_{C2}(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \end{bmatrix}$$

$$V_{B2} = (V_{A2}Z_{C2} + V_{A1}R_{2}) \frac{[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4})]}{[(R_{2} + Z_{C2})[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4})]]} \\ + 2R_{2}Z_{C2}(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \end{bmatrix}$$

$$V_{B3} = (V_{A3}Z_{C2} + V_{A2}R_{2}) \frac{[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4})]}{[(R_{2} + Z_{C2})[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4})]} \\ V_{B4} = (V_{A4}Z_{C2} + V_{A3}R_{2}) \frac{[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4})]}{[(R_{2} + Z_{C2})[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4})]} \\ + 2R_{2}Z_{C2}(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \end{bmatrix}$$

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages on 2nd Loop

Voltages on 2nd loop

$$V_{B1} = V_{in1} \frac{\left[\left(Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right) Z_{C2} + \frac{V_{in4}}{V_{in1}} \left(Z_{C1} + \frac{V_{in3}}{V_{in4}} R_{1} \right) R_{2} \right] \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \right] \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R_{1} + Z_{C1}) R_{2}Z_{C2} + R_{1}Z_{C1}(R_{2} + Z_{C2}) \right] \right] \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R_{1} + Z_{C1}) R_{2}Z_{C2} + R_{1}Z_{C1}(R_{2} + Z_{C2}) \right] \right] \\ V_{B2} = V_{in2} \frac{\left[\left(Z_{C1} + \frac{V_{in1}}{V_{in2}} R_{1} \right) Z_{C2} + \frac{V_{in1}}{V_{in2}} \left(Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right) R_{2} \right] \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \right] \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R_{1} + Z_{C1}) R_{2}Z_{C2} + R_{1}Z_{C1}(R_{2} + Z_{C2}) \right] \right] \\ V_{B3} = V_{in3} \frac{\left[\left(Z_{C1} + \frac{V_{in2}}{V_{in3}} R_{1} \right) Z_{C2} + \frac{V_{in2}}{V_{in3}} \left(Z_{C1} + \frac{V_{in1}}{V_{in2}} R_{1} \right) R_{2} \right] \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \right] \\ V_{B3} = V_{in3} \frac{\left[\left(Z_{C1} + \frac{V_{in2}}{V_{in3}} R_{1} \right) Z_{C2} + \frac{V_{in2}}{V_{in3}} \left(Z_{C1} + \frac{V_{in1}}{V_{in2}} R_{1} \right) R_{2} \right] \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \right] \\ V_{B4} = V_{in4} \frac{\left[\left(Z_{C1} + \frac{V_{in3}}{V_{in3}} R_{1} \right) Z_{C2} + \frac{V_{in3}}{V_{in4}} \left(Z_{C1} + \frac{V_{in1}}{V_{in2}} R_{1} \right) R_{2} \right] \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \right] \\ V_{B4} = V_{in4} \frac{\left[\left(Z_{C1} + \frac{V_{in3}}{V_{in4}} R_{1} \right) Z_{C2} + \frac{V_{in3}}{V_{in4}} \left(Z_{C1} + \frac{V_{in2}}{V_{in3}} R_{1} \right) R_{2} \right] \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \right] \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R_{1} + Z_{C1}) R_{2}Z_{C2} + R_{1}Z_{C1} (R_{2} + Z_{C2}) \right] \right] \\ V_{B4} = V_{in4} \frac{\left[\left(Z_{C1} + \frac{V_{in3}}{V_{in4}} R_{1} \right] Z_{C2} + \frac{V_{in3}}{V_{in4}} \left(Z_{C1} + \frac{V_{in2}}{V_{in3}} R_{1} \right) R_{2} \left[2R_{3}Z_{C3} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R_{1} + Z_{C1}) R_{2}Z_{C2} + R_{1}Z_{C1} (R_{2} + Z_{C2}) \right] \right]$$

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages on 3rd Loop

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages on 3rd Loop

Voltages on 3rd loop

$$\begin{cases} V_{C1} = \left(V_{B1}Z_{C3} + V_{B4}R_{3}\right) \frac{\left(Z_{C4} + R_{4}\right)}{\left(Z_{C3} + R_{3}\right)\left(Z_{C4} + R_{4}\right) + 2R_{3}Z_{C3}} \\ V_{C2} = \left(V_{B2}Z_{C3} + V_{B1}R_{3}\right) \frac{\left(Z_{C4} + R_{4}\right)}{\left(Z_{C3} + R_{3}\right)\left(Z_{C4} + R_{4}\right) + 2R_{3}Z_{C3}} \\ V_{C3} = \left(V_{B3}Z_{C3} + V_{B2}R_{3}\right) \frac{\left(Z_{C4} + R_{4}\right)}{\left(Z_{C3} + R_{3}\right)\left(Z_{C4} + R_{4}\right) + 2R_{3}Z_{C3}} \\ V_{C4} = \left(V_{B4}Z_{C3} + V_{B3}R_{3}\right) \frac{\left(Z_{C4} + R_{4}\right)}{\left(Z_{C3} + R_{3}\right)\left(Z_{C4} + R_{4}\right) + 2R_{3}Z_{C3}} \end{cases}$$

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages on 3rd Loop

Voltages on 3rd loop

$$\begin{cases} V_{C1} = V_{in1} & \frac{\left\{ \left[\left(Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right) Z_{C2} + \frac{V_{in4}}{V_{in1}} \left(Z_{C1} + \frac{V_{in3}}{V_{in4}} R_{1} \right) R_{2} \right] Z_{C3} + \frac{V_{in4}}{V_{in1}} \left[\left(Z_{C1} + \frac{V_{in3}}{V_{in4}} R_{1} \right) Z_{C2} + \frac{V_{in3}}{V_{in4}} \left(Z_{C1} + \frac{V_{in2}}{V_{in3}} R_{1} \right) R_{2} \right] R_{3} \right] (Z_{C4} + R_{4}) \\ & \left\{ \left[2R_{Z_{C1}} + (R_{1} + Z_{C1})(R_{2} + Z_{C2}) \right] \left[2R_{Z_{C2}} + (R_{3} + Z_{C3})(R_{4} + Z_{C4}) \right] \right\} \\ + 2(R_{3} + Z_{C3} + R_{4} + Z_{C4}) \left[(R_{1} + Z_{c1})R_{2}Z_{C2} + R_{1}Z_{C1}(R_{2} + Z_{C2}) \right] \right] \\ V_{C2} = V_{in2} \\ & \left\{ \frac{\left[\left(Z_{C1} + \frac{V_{in1}}{V_{in2}} R_{1} \right) Z_{C2} + \frac{V_{in1}}{V_{in2}} \left(Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right) R_{2} \right] Z_{C3} + \frac{V_{in1}}{V_{in2}} \left[\left[Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right] Z_{C2} + \frac{V_{in4}}{V_{in4}} \left(Z_{C1} + \frac{V_{in3}}{V_{in4}} R_{1} \right) R_{2} \right] R_{3} \right] (Z_{C4} + R_{4}) \\ & \left\{ \frac{\left[\left(Z_{C1} + \frac{V_{in4}}{V_{in2}} R_{1} \right) Z_{C2} + \frac{V_{in4}}{V_{in1}} \left(Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right) R_{2} \right] Z_{C3} + \frac{V_{in1}}{V_{in2}} \left[Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right] R_{2} \right] R_{3} \right] (Z_{C4} + R_{4}) \\ & \left\{ \frac{\left[\left(Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right) Z_{C2} + \frac{V_{in4}}{V_{in1}} \left(Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right) R_{2} \right] Z_{C3} + \frac{V_{in1}}{V_{in2}} \left[Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right] R_{2} \right] R_{3} \right] (Z_{C4} + R_{4}) \\ & \left\{ \frac{\left[\left(Z_{C1} + \frac{V_{in2}}{V_{in3}} R_{1} \right) Z_{C2} + \frac{V_{in4}}{V_{in1}} \left(Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right) R_{2} \right] Z_{C3} + \frac{V_{in4}}{V_{in1}} \left[Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right] R_{2} \right] R_{3} \right\} (Z_{C4} + R_{4}) \\ & \left\{ \frac{\left[\left(Z_{C1} + \frac{V_{in4}}{V_{in3}} R_{1} \right) Z_{C2} + \frac{V_{in4}}{V_{in3}} \left(Z_{C1} + \frac{V_{in4}}{V_{in3}} R_{1} \right) R_{2} \right] Z_{C3} + \frac{V_{in4}}{V_{in3}} \left[Z_{C1} + \frac{V_{in4}}{V_{in1}} R_{1} \right] R_{2} \right] R_{3} \right\} (Z_{C4} + R_{4}) \\ & \left\{ \frac{\left[\left(Z_{C1} + \frac{V_{in4}}{V_{in3}} R_{1} \right) Z_{C2} + \frac{V_{in4}}{V_{in4}} \left(Z_{C1} + \frac{V_{in4}}{V_{in3}} R_{1} \right) R_{2} \right] R_{3} \right\} (Z_{C4} + R_{4}) \\ & \left\{ \frac{\left[\left(Z_{C1} + \frac{V_{in4}}{V_{in3}} R_{1} \right) Z_{C2}$$

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages on 4th Loop

$V_{out1} Y_{total}$	_D =	$\frac{V_{C1}}{R_4} +$	$\frac{V_{C4}}{Z_{C4}}$
$V_{out2} Y_{total}$	_D =	$\frac{V_{C2}}{R_4} +$	$\frac{V_{C1}}{Z_{C4}}$
V _{out3} Y _{total_}	_D =	$\frac{V_{C3}}{R_4} +$	$\frac{V_{C2}}{Z_{C4}}$
V _{out 4} Y _{total}	_D =	$\frac{V_{C4}}{R_4} +$	$\frac{V_{C3}}{Z_{C4}}$

Here:

$$Y_{total_D} = \frac{1}{R_4} + \frac{1}{Z_{C4}} = \frac{R_4 + Z_{C4}}{R_4 Z_{C4}}$$

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages on 4th Loop

Voltages on 4th loop

$$V_{out1} = \left(V_{C1}Z_{C4} + V_{C4}R_{4}\right)\frac{1}{R_{4} + Z_{C4}}$$
$$V_{out2} = \left(V_{C2}Z_{C4} + V_{C1}R_{4}\right)\frac{1}{R_{4} + Z_{C4}}$$
$$V_{out3} = \left(V_{C3}Z_{C4} + V_{C2}R_{4}\right)\frac{1}{R_{4} + Z_{C4}}$$
$$V_{out4} = \left(V_{C4}Z_{C4} + V_{C3}R_{4}\right)\frac{1}{R_{4} + Z_{C4}}$$

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages on 4th Loop

Voltages on 4th loop

	$V_{in1} \left(Z_{C4} \left(Z_{C2} \left[Z_{C1} + R_1 \left(\frac{V_{in4}}{V_{in1}} \right) \right] + \left(\frac{V_{in4}}{V_{in1}} \right) R_2 \left[Z_{C1} + R_1 \left(\frac{V_{in3}}{V_{in4}} \right) \right] \right) + \left(\frac{V_{in4}}{V_{in1}} \right) R_2 \left[Z_{C1} + R_1 \left(\frac{V_{in3}}{V_{in4}} \right) \right] \right) + \left(\frac{V_{in4}}{V_{in1}} \right) R_4 \left(\frac{V_{in4}}{V_{in1}} \right) R_4 \left(\frac{V_{in3}}{V_{in4}} \right) R_4 \left(V_{i$
V out1	$= \frac{\left[2R_{1}Z_{C1} + (Z_{C2} + R_{2})(Z_{C1} + R_{1})\right]\left[2R_{3}Z_{C3} + (Z_{C3} + R_{3})(Z_{C4} + R_{4})\right] + 2(Z_{C3} + R_{3} + Z_{C4} + R_{4})\left[(Z_{C1} + R_{1})R_{2}Z_{C2} + (Z_{C2} + R_{2})R_{1}Z_{C1}\right]}{\left[2R_{3}Z_{C3} + (Z_{C3} + R_{3})(Z_{C4} + R_{4})\right] + 2(Z_{C3} + R_{3} + Z_{C4} + R_{4})\left[(Z_{C1} + R_{1})R_{2}Z_{C2} + (Z_{C2} + R_{2})R_{1}Z_{C1}\right]}$
	$V_{in2}\left[Z_{C4}\left[Z_{C3}\left\{Z_{C2}\left[Z_{C1}+R_{1}\left(\frac{V_{in1}}{V_{in2}}\right)\right]+\left(\frac{V_{in1}}{V_{in2}}\right)R_{2}\left[Z_{C1}+R_{1}\left(\frac{V_{in4}}{V_{in1}}\right)\right]\right\}\right]+\left(\frac{V_{in4}}{V_{in1}}\right)R_{4}\left[Z_{C3}\left\{Z_{C2}\left[Z_{C1}+R_{1}\left(\frac{V_{in4}}{V_{in1}}\right)\right]+\left(\frac{V_{in4}}{V_{in4}}\right)\right]\right\}\right]\right]$
	$\left(+ \left(\frac{V_{in1}}{V_{in2}}\right)R_3 \left\{ Z_{C2} \left[Z_{C1} + R_1 \left(\frac{V_{in4}}{V_{in1}}\right) \right] + \left(\frac{V_{in4}}{V_{in1}}\right)R_2 \left[Z_{C1} + R_1 \left(\frac{V_{in3}}{V_{in4}}\right) \right] \right\} \right\} \right) + \left(\frac{V_{in2}}{V_{in1}}\right)R_3 \left\{ Z_{C2} \left[Z_{C1} + R_1 \left(\frac{V_{in3}}{V_{in4}}\right) \right] + \left(\frac{V_{in3}}{V_{in4}}\right)R_2 \left[Z_{C1} + R_1 \left(\frac{V_{in3}}{V_{in3}}\right) \right] \right\} \right\}$
$\int V_{out2}$	$= \frac{\left[2R_{1}Z_{C1} + (Z_{C2} + R_{2})(Z_{C1} + R_{1})\right]\left[2R_{3}Z_{C3} + (Z_{C3} + R_{3})(Z_{C4} + R_{4})\right] + 2(Z_{C3} + R_{3} + Z_{C4} + R_{4})\left[(Z_{C1} + R_{1})R_{2}Z_{C2} + (Z_{C2} + R_{2})R_{1}Z_{C1}\right]}{\left[2R_{3}Z_{C3} + (Z_{C3} + R_{3})(Z_{C4} + R_{4})\right] + 2(Z_{C3} + R_{3} + Z_{C4} + R_{4})\left[(Z_{C1} + R_{1})R_{2}Z_{C2} + (Z_{C2} + R_{2})R_{1}Z_{C1}\right]}$
	$V_{in3}\left[Z_{C3}\left\{Z_{C2}\left[Z_{C1}+R_{1}\left(\frac{V_{in2}}{V_{in3}}\right)\right]+\left(\frac{V_{in2}}{V_{in3}}\right)\right]+\left(\frac{V_{in1}}{V_{in2}}\right)\right]\right\}$ $+\left(\frac{V_{in2}}{V_{in2}}\right)R_{4}\left[Z_{C3}\left\{Z_{C2}\left[Z_{C1}+R_{1}\left(\frac{V_{in1}}{V_{in2}}\right)\right]+\left(\frac{V_{in1}}{V_{in2}}\right)\right]+\left(\frac{V_{in1}}{V_{in2}}\right)\right]\right\}$
	$ = \left[\left\{ \left\{ \left\{ \frac{V_{in1}}{V_{in3}} \right\} R_3 \left\{ Z_{C2} \left[Z_{C1} + R_1 \left(\frac{V_{in1}}{V_{in2}} \right) \right] + \left(\frac{V_{in1}}{V_{in2}} \right) R_2 \left[Z_{C1} + R_1 \left(\frac{V_{in4}}{V_{in1}} \right) \right] \right\} \right] \right\} \right] + \left[\left\{ \frac{V_{in3}}{V_{in3}} \right\} + \left[\frac{V_{in4}}{V_{in1}} \right] R_3 \left\{ Z_{C2} \left[Z_{C1} + R_1 \left(\frac{V_{in4}}{V_{in1}} \right) \right] + \left(\frac{V_{in4}}{V_{in1}} \right) \right] \right\} \right] \right] \right] \right] $
out3	$ \left[2R_{1}Z_{C1} + (Z_{C2} + R_{2})(Z_{C1} + R_{1})\right] \left[2R_{3}Z_{C3} + (Z_{C3} + R_{3})(Z_{C4} + R_{4})\right] + 2(Z_{C3} + R_{3} + Z_{C4} + R_{4}) \left[(Z_{C1} + R_{1})R_{2}Z_{C2} + (Z_{C2} + R_{2})R_{1}Z_{C1}\right] $
	$V_{in4} \left[Z_{C3} \left\{ Z_{C2} \left[Z_{C1} + R_1 \left(\frac{V_{in3}}{V_{in4}} \right) \right] + \left(\frac{V_{in3}}{V_{in4}} \right) R_2 \left[Z_{C1} + R_1 \left(\frac{V_{in2}}{V_{in3}} \right) \right] \right\} + \left(\frac{V_{in3}}{V_{in4}} \right) R_2 \left[Z_{C1} + R_1 \left(\frac{V_{in2}}{V_{in3}} \right) \right] \right\} + \left(\frac{V_{in3}}{V_{in4}} \right) R_2 \left[Z_{C1} + R_1 \left(\frac{V_{in3}}{V_{in4}} \right) \right] \right\} $
V	$ + \frac{1}{\left(1 + \left(\frac{V_{in3}}{V_{in4}}\right)R_3\left\{Z_{C2}\left[Z_{C1} + R_1\left(\frac{V_{in2}}{V_{in3}}\right)\right] + \left(\frac{V_{in2}}{V_{in3}}\right)R_2\left[Z_{C1} + R_1\left(\frac{V_{in1}}{V_{in2}}\right)\right]\right\}\right\} + \left(\frac{V_{in4}}{V_{in4}}\right)^{-4} \left(+ \left(\frac{V_{in4}}{V_{in3}}\right)R_3\left\{Z_{C2}\left[Z_{C1} + R_1\left(\frac{V_{in1}}{V_{in2}}\right)\right] + \left(\frac{V_{in1}}{V_{in2}}\right)R_2\left[Z_{C1} + R_1\left(\frac{V_{in4}}{V_{in1}}\right)\right]\right\}\right) \right\} $
v out4	$= \left[2R_{1}Z_{C1} + (Z_{C2} + R_{2})(Z_{C1} + R_{1})\right] \left[2R_{3}Z_{C3} + (Z_{C3} + R_{3})(Z_{C4} + R_{4})\right] + 2(Z_{C3} + R_{3} + Z_{C4} + R_{4})\left[(Z_{C1} + R_{1})R_{2}Z_{C2} + (Z_{C2} + R_{2})R_{1}Z_{C1}\right]$

2. Analysis of 4-Stage Passive RC Network Model of Input Wanted Signals

 $S_{Pos_poly} \left\{ V_1(t); V_2(t); V_3(t); V_4(t) \right\}$ = $\{1; j; -1; -j\} V_{pos}(t) = \left\{ 1; e^{j\frac{\pi}{2}}; e^{j\pi}; e^{j\frac{3\pi}{2}} \right\} \sum_{k=1}^n A_k \cos(\omega_k t + \theta_k)$

Positive poly-phase signals

2. Analysis of 4-Stage Passive RC Network Derivation of Output Voltages (Wanted Signal)

Output voltages

$$V_{out1} = V_{in1} \frac{(Z_{C4} - jR_4)(Z_{C3} - jR_3)(Z_{C2} - jR_2)(Z_{C1} - jR_1)}{\left\{ \begin{bmatrix} 2R_1Z_{C1} + (Z_{C2} + R_2)(Z_{C1} + R_1) \end{bmatrix} \begin{bmatrix} 2R_3Z_{C3} + (Z_{C3} + R_3)(Z_{C4} + R_4) \end{bmatrix} \right\} \\ + 2(Z_{C3} + R_3 + Z_{C4} + R_4) \begin{bmatrix} (Z_{C1} + R_1)R_2Z_{C2} + (Z_{C2} + R_2)R_1Z_{C1} \end{bmatrix} \\ V_{out2} = V_{in2} \frac{(Z_{C4} - jR_4)(Z_{C3} - jR_3)(Z_{C2} - jR_2)(Z_{C1} - jR_1)}{\left\{ \begin{bmatrix} 2R_1Z_{C1} + (Z_{C2} + R_2)(Z_{C1} + R_1) \end{bmatrix} \begin{bmatrix} 2R_3Z_{C3} + (Z_{C3} + R_3)(Z_{C4} + R_4) \end{bmatrix} \right\} \\ + 2(Z_{C3} + R_3 + Z_{C4} + R_4) \begin{bmatrix} (Z_{C1} + R_1)R_2Z_{C2} + (Z_{C2} + R_2)R_1Z_{C1} \end{bmatrix} \right\} \\ V_{out3} = V_{in3} \frac{(Z_{C4} - jR_4)(Z_{C3} - jR_3)(Z_{C2} - jR_2)(Z_{C1} - jR_1)}{\left\{ \begin{bmatrix} 2R_1Z_{C1} + (Z_{C2} + R_2)(Z_{C1} + R_1) \end{bmatrix} \begin{bmatrix} 2R_3Z_{C3} + (Z_{C3} + R_3)(Z_{C4} + R_4) \end{bmatrix} \right\} \\ + 2(Z_{C3} + R_3 + Z_{C4} + R_4) \begin{bmatrix} (Z_{C1} + R_1)R_2Z_{C2} + (Z_{C2} + R_2)R_1Z_{C1} \end{bmatrix} \right\} \\ V_{out4} = V_{in4} \frac{(Z_{C4} - jR_4)(Z_{C3} - jR_3)(Z_{C2} - jR_2)(Z_{C1} - jR_1)}{\left\{ \begin{bmatrix} 2R_1Z_{C1} + (Z_{C2} + R_2)(Z_{C1} + R_1) \end{bmatrix} \begin{bmatrix} 2R_3Z_{C3} + (Z_{C3} + R_3)(Z_{C4} + R_4) \end{bmatrix} \right\} \\ + 2(Z_{C3} + R_3 + Z_{C4} + R_4) \begin{bmatrix} (Z_{C1} + R_1)R_2Z_{C2} + (Z_{C2} + R_2)R_1Z_{C1} \end{bmatrix} \right\} \\ V_{out4} = V_{in4} \frac{(Z_{C4} - jR_4)(Z_{C2} - jR_3)(Z_{C2} - jR_2)(Z_{C1} - jR_1)}{\left\{ \begin{bmatrix} 2R_1Z_{C1} + (Z_{C2} + R_2)(Z_{C1} + R_1) \end{bmatrix} \begin{bmatrix} 2R_3Z_{C3} + (Z_{C3} + R_3)(Z_{C4} + R_4) \end{bmatrix} \right\} \\ + 2(Z_{C3} + R_3 + Z_{C4} + R_4) \begin{bmatrix} (Z_{C1} + R_1)R_2Z_{C2} + (Z_{C2} + R_2)R_1Z_{C1} \end{bmatrix} \right\} \\ V_{out4} = V_{in4} \frac{(Z_{C4} - jR_4)(Z_{C2} - jR_2)(Z_{C1} + R_1)R_2Z_{C2} + (Z_{C2} + R_2)R_1Z_{C1} \end{bmatrix}$$

2. Analysis of 4-Stage Passive RC Network Derivation of Transfer Function (Wanted Signal)

Transfer Function

$$H = \frac{V_{out1}}{V_{in1}} = \frac{V_{out2}}{V_{in2}} = \frac{V_{out3}}{V_{in3}} = \frac{V_{out4}}{V_{in4}}$$

=
$$\frac{(Z_{C4} - jR_4)(Z_{C3} - jR_3)(Z_{C2} - jR_2)(Z_{C1} - jR_1)}{\left[\left[2R_1Z_{C1} + (Z_{C2} + R_2)(Z_{C1} + R_1) \right] \left[2R_3Z_{C3} + (Z_{C3} + R_3)(Z_{C4} + R_4) \right] \right]}$$

+
$$2(Z_{C3} + R_3 + Z_{C4} + R_4) \left[(Z_{C1} + R_1)R_2Z_{C2} + (Z_{C2} + R_2)R_1Z_{C1} \right]$$

$$\begin{split} Z_{C1} &= \frac{1}{j2\pi fC_1}; Z_{C2} = \frac{1}{j2\pi fC_2} \qquad f_1 = \frac{1}{2\pi R_1 C_1}; f_2 = \frac{1}{2\pi R_2 C_2}; f_{21} = \frac{1}{2\pi R_2 C_1}; \\ Z_{C3} &= \frac{1}{j2\pi fC_3} \qquad f_3 = \frac{1}{2\pi R_3 C_3}; f_{31} = \frac{1}{2\pi R_3 C_1}; f_{32} = \frac{1}{2\pi R_3 C_2}; \\ Z_{C4} &= \frac{1}{j2\pi fC_4} \qquad f_4 = \frac{1}{2\pi R_4 C_4}; f_{41} = \frac{1}{2\pi R_4 C_1}; f_{42} = \frac{1}{2\pi R_4 C_2}; f_{43} = \frac{1}{2\pi R_4 C_3}; \end{split}$$

2. Analysis of 4-Stage Passive RC Network Derivation of Transfer Function (Wanted Signal)

Transfer Function

$$H = \begin{cases} s^{4} + js^{3} \left(f_{4} + f_{3} + f_{2} + f_{1}\right) - s^{2} \left[f_{4} \left(f_{3} + f_{2} + f_{1}\right) + f_{3} \left(f_{2} + f_{1}\right) + f_{2} f_{1}\right] \right] \\ -js \left\{f_{4} \left[f_{3} \left(f_{2} + f_{1}\right) + f_{2} f_{1}\right] + f_{3} f_{2} f_{1}\right\} + f_{4} f_{3} f_{2} f_{1} \right] \\ s^{4} + s^{3} \left(f_{4} + f_{3} + f_{2} + f_{1} + 2 \left[\left(f_{43} + f_{42} + f_{41}\right) + \left(f_{32} + f_{31}\right) + f_{21}\right]\right) \right] \\ + s^{2} \left[f_{4} \left(f_{3} + f_{2} + f_{1}\right) + f_{3} \left(f_{2} + f_{1}\right) + f_{2} f_{1} + f_{3} \left(f_{42} + f_{41}\right) + f_{21}\right) + f_{3} \left(\left(f_{42} + f_{41}\right) + f_{21}\right) + f_{2} \left(\left(f_{43} + f_{41}\right) + f_{31}\right) + f_{1} \left(\left(f_{43} + f_{42}\right) + f_{32}\right)\right) \right] \\ + s \left\{f_{4} \left[f_{3} \left(f_{2} + f_{1}\right) + f_{2} f_{1}\right] + f_{3} f_{2} f_{1} + 2 \left(f_{4} \left(f_{3} f_{21} + f_{2} f_{31} + f_{1} f_{32}\right) + f_{3} \left(f_{2} f_{41} + f_{1} f_{42}\right) + f_{2} f_{1} f_{43}\right) \right\} \\ + f_{4} f_{3} f_{2} f_{1} \end{cases}$$

2. Analysis of 4-Stage Passive RC Network Derivation of Transfer Function (Wanted Signal)

$$a_{1} = f_{4} + f_{3} + f_{2} + f_{1}$$

$$a_{2} = f_{4} (f_{3} + f_{2} + f_{1}) + f_{3} (f_{2} + f_{1}) + f_{2} f_{1}$$

$$a_{3} = f_{4} [f_{3} (f_{2} + f_{1}) + f_{2} f_{1}] + f_{3} f_{2} f_{1}$$

$$a_{4} = f_{4} f_{3} f_{2} f_{1}$$

$$a_{5} = a_{1} + 2 [(f_{43} + f_{42} + f_{41}) + (f_{32} + f_{31}) + f_{21}]$$

$$a_{6} = a_{2} + 4 f_{43} f_{21} + 2 \begin{pmatrix} f_{4} ((f_{32} + f_{31}) + f_{21}) + f_{3} ((f_{42} + f_{41}) + f_{21}) \\ + f_{2} ((f_{43} + f_{41}) + f_{31}) + f_{1} ((f_{43} + f_{42}) + f_{32}) \end{pmatrix}$$

$$a_{7} = a_{3} + 2 (f_{4} (f_{3} f_{21} + f_{2} f_{31} + f_{1} f_{32}) + f_{3} (f_{2} f_{41} + f_{1} f_{42}) + f_{2} f_{1} f_{43})$$

Transfer function

$$H_{Pos}(j2\pi f) = \frac{s^4 + ja_1s^3 - a_2s^2 - ja_3s + a_4}{s^4 + a_5s^3 + a_6s^2 + a_7s + a_4}$$

2. Analysis of 4-Stage Passive RC Network Model of Input Image Signals

 $S_{Neg_poly}\left\{V_1(t);V_2(t);V_3(t);V_4(t)\right\}$

$$=\left\{V(t);-jV(t);-V(t);jV(t)\right\}=\left\{V(t);e^{-j\frac{\pi}{2}}V(t);e^{-j\pi}V(t);e^{-j\frac{\pi}{2}}V(t)\right\}$$

Negative poly-phase signals

$$\frac{V_{in1}}{V_{in2}} = \frac{V_{in2}}{V_{in3}} = \frac{V_{in3}}{V_{in4}} = \frac{V_{in4}}{V_{in1}} = +j$$
Image Signals
$$S_{Neg_C} S_{Neg_B} S_{Neg_A} |H(j\omega)|$$
phase
plane
$$e^{-j\omega_4} e^{-j\omega_3} e^{-j\omega_2} e^{-j\omega_1} 0$$
phason

2. Analysis of 4-Stage Passive RC Network Derivation of Transfer Function (Image Signal)

Transfer Function

$$H = \frac{(Z_{C4} + jR_4)(Z_{C3} + jR_3)(Z_{C2} + jR_2)(Z_{C1} + jR_1)}{\left\{ \begin{bmatrix} 2R_1Z_{C1} + (Z_{C2} + R_2)(Z_{C1} + R_1) \end{bmatrix} \begin{bmatrix} 2R_3Z_{C3} + (Z_{C3} + R_3)(Z_{C4} + R_4) \end{bmatrix} \right\} + 2(Z_{C3} + R_3 + Z_{C4} + R_4) \begin{bmatrix} (Z_{C1} + R_1)R_2Z_{C2} + (Z_{C2} + R_2)R_1Z_{C1} \end{bmatrix} \right\}}$$

$$H = \frac{\left\{s^{4} - js^{3}(f_{4} + f_{3} + f_{2} + f_{1}) - s^{2}\left[f_{4}(f_{3} + f_{2} + f_{1}) + f_{3}(f_{2} + f_{1}) + f_{2}f_{1}\right] + js\left\{f_{4}\left[f_{3}(f_{2} + f_{1}) + f_{2}f_{1}\right] + f_{3}f_{2}f_{1}\right\} + f_{4}f_{3}f_{2}f_{1}}{\left\{s^{4} + s^{3}(f_{4} + f_{3} + f_{2} + f_{1} + 2\left[(f_{43} + f_{42} + f_{41}) + (f_{32} + f_{31}) + f_{21}\right]\right) + s^{2}\left[f_{4}(f_{3} + f_{2} + f_{1}) + f_{3}(f_{2} + f_{1}) + f_{3}((f_{42} + f_{41}) + f_{21}) + f_{3}((f_{43} + f_{42}) + f_{32})\right)\right]}{\left\{s^{4} + s^{3}(f_{4} + f_{3} + f_{2} + f_{1}) + f_{2}f_{1}\right\} + f_{3}f_{2}f_{1} + f_{3}(f_{2}f_{41} + f_{1}f_{42}) + f_{2}f_{1}f_{43}\right]} + f_{4}f_{3}f_{2}f_{1}$$

$$H_{\text{res}}\left(i2\pi f_{1}\right) = \frac{s^{4} - ja_{1}s^{3} - a_{2}s^{2} + ja_{3}s + a_{4}}{s^{4}}$$

$$\frac{1}{s^{4} + a_{5}s^{3} + a_{6}s^{2} + a_{7}s + a_{4}s^{4}}$$

2. Analysis of 4-Stage Passive RC Network

Composed Transfer Function of 4-Stage Passive RC Network

Wanted Signals

$$H_{Pos}(j2\pi f) = \frac{s^4 + ja_1s^3 - a_2s^2 - ja_3s + a_4}{s^4 + a_5s^3 + a_6s^2 + a_7s + a_4}; \forall f > 0$$

Image Signals

$$H_{Neg}\left(j2\pi f\right) = \frac{s^4 - ja_1s^3 - a_2s^2 + ja_3s + a_4}{s^4 + a_5s^3 + a_6s^2 + a_7s + a_4}; \forall f < 0$$

Composed transfer function

$$\left|H(f)\right| = \frac{\left|f^{4} + a_{1}f^{3} + a_{2}f^{2} + a_{3}f + a_{4}\right|}{\sqrt{\left(f^{4} + a_{4} - a_{6}f^{2}\right)^{2} + \left(a_{7}f - a_{5}f^{3}\right)^{2}}}; \forall f \in \mathbb{R}$$

2. Analysis of 4-Stage Passive RC Network Analysis of Transfer Function (Positive Frequency)

$$\begin{aligned} \left| H(f) \right| &= \frac{f^4 + a_1 f^3 + a_2 f^2 + a_3 f + a_4}{\sqrt{\left(f^4 + a_4 - a_6 f^2\right)^2 + \left(a_7 f - a_5 f^3\right)^2}}; \forall f > 0 \\ \lim_{f \to 0} \left| H(f) \right| &= \lim_{f \to 0} \frac{f^4 + a_1 f^3 + a_2 f^2 + a_3 f + a_4}{\sqrt{\left(f^4 + a_4 - a_6 f^2\right)^2 + \left(a_7 f - a_5 f^3\right)^2}} = 1 \\ \lim_{f \to \infty} \left| H(f) \right| &= \lim_{f \to \infty} \frac{f^4 + a_1 f^3 + a_2 f^2 + a_3 f + a_4}{\sqrt{\left(f^4 + a_4 - a_6 f^2\right)^2 + \left(a_7 f - a_5 f^3\right)^2}} = 1 \\ \min\left(\left| H(f) \right|\right) as \quad f = \sqrt[4]{f_4 f_3 f_2 f_1} \end{aligned}$$

Applying Cauchy-Schwarz inequality theorem:

$$a, b > 0, a^{2} + b^{2} \ge 2ab; \min(a^{2} + b^{2}) = 2ab \ as \ "a = b"$$

$$\left(f^{4} + a_{4} - a_{6}f^{2}\right)^{2} + \left(a_{7}f - a_{5}f^{3}\right)^{2} \ge 2\left|\left(f^{4} + a_{4} - a_{6}f^{2}\right)\right| \left|\left(a_{7}f - a_{5}f^{3}\right)\right|$$

$$\left|\left(f^{4} + a_{4} - a_{6}f^{2}\right)\right| = \left|\left(a_{7}f - a_{5}f^{3}\right)\right|; \Rightarrow \begin{bmatrix}f_{\min 1} = \dots \\ f_{\min 2} = \dots \end{bmatrix} \begin{bmatrix}\max 1(|H(f)|)\\\max 2(|H(f)|)\\\max 2(|H(f)|)\end{bmatrix}$$

2. Analysis of 4-Stage Passive RC Network Analysis of Transfer Function (Negative Frequency)

$$\begin{aligned} \left| H\left(f\right) \right| &= \frac{f^4 - a_1 f^3 + a_2 f^2 - a_3 f + a_4}{\sqrt{\left(f^4 + a_4 - a_6 f^2\right)^2 + \left(a_7 f - a_5 f^3\right)^2}}; \forall f < 0\\ \lim_{f \to 0} \left| H\left(f\right) \right| &= \lim_{f \to 0} \frac{f^4 - a_1 f^3 + a_2 f^2 - a_3 f + a_4}{\sqrt{\left(f^4 + a_4 - a_6 f^2\right)^2 + \left(a_7 f - a_5 f^3\right)^2}} = 1 \end{aligned}$$

$$\lim_{f \to -\infty} |H(f)| = \lim_{f \to -\infty} \frac{f^4 - a_1 f^3 + a_2 f^2 - a_3 f + a_4}{\sqrt{\left(f^4 + a_4 - a_6 f^2\right)^2 + \left(a_7 f - a_5 f^3\right)^2}} = 1$$

$$\min(|H(f)|_{dB}) = -\infty; as \ f = -f_1 \lor f = -f_2 \lor f = -f_3 \lor f = -f_4$$

 $\max \left(\left| H\left(f\right) \right| \right) as f = \sqrt{f_1 f_2}; \max \left(\left| H\left(f\right) \right| \right) as f = \sqrt{f_2 f_3}; \max \left(\left| H\left(f\right) \right| \right) as f = \sqrt{f_3 f_4}$

2. Analysis of 4-Stage Passive RC Network Frequency Responses

Transfer function $|H(f)| = \frac{\left|f^4 + a_1f^3 + a_2f^2 + a_3f + a_4\right|}{\sqrt{\left(f^4 + a_4 - a_6f^2\right)^2 + \left(a_7f - a_5f^3\right)^2}}; \forall f \in \mathbb{R}$

2. Analysis of 4-Stage Passive RC Network Image Rejection Ratio

Outline

- 1. Research Background
 - Applications of RC Poly-phase Network
 - Analog Complex Signal Processing Concepts
- 2. Analysis of 4-Stage Passive RC Network
 - Frequency Responses
 - Image Rejection Ratio

3. Proposed Model of 4-Stage Passive RC Network

- Model of 4-Stage Passive RC Network
- Simulation Results
- 4. Conclusions

3. Proposed Model of 4-Stage Passive RC Network Model of 4-Stage Passive RC Network

$$\begin{split} R_1 &= 1k\Omega; C_1 = 227\,pF; \\ R_2 &= 1k\Omega; C_2 = 106\,pF; \\ R_3 &= 1k\Omega; C_3 = 39.8\,pF; \\ R_4 &= 1k\Omega; C_4 = 15.9\,pF; \end{split}$$

$$\begin{split} f_1 &= 0.7 MHz; \\ f_2 &= 1.5 MHz; f_{21} = 0.7 MHz; \\ f_3 &= 4 MHz; f_{31} = 0.7 MHz; f_{32} = 1.5 MHz; \\ f_4 &= 10 MHz; f_{41} = 0.7 MHz; f_{42} = 1.5 MHz; f_{43} = 4 MHz; \end{split}$$

3. Proposed Model of 4-Stage Passive RC Network Simplified Model of 4-Stage Passive RC Network

$$a_{1} = f_{4} + f_{3} + f_{2} + f_{1} = 1.62 * 10^{7}$$

$$a_{2} = f_{4} (f_{3} + f_{2} + f_{1}) + f_{3} (f_{2} + f_{1}) + f_{2} f_{1} = 7.19 * 10^{13}$$

$$a_{3} = f_{4} [f_{3} (f_{2} + f_{1}) + f_{2} f_{1}] + f_{3} f_{2} f_{1} = 1.03 * 10^{20}$$

$$a_{4} = f_{4} f_{3} f_{2} f_{1} = 4.2 * 10^{25}$$

$$a_{5} = a_{1} + 2 [(f_{43} + f_{42} + f_{41}) + (f_{32} + f_{31}) + f_{21}] = 3.44 * 10^{7}$$

$$a_{6} = a_{2} + 4 f_{43} f_{21} + 2 \begin{pmatrix} f_{4} ((f_{32} + f_{31}) + f_{21}) + f_{3} ((f_{42} + f_{41}) + f_{21}) \\ + f_{2} ((f_{43} + f_{41}) + f_{31}) + f_{1} ((f_{43} + f_{42}) + f_{32}) \end{pmatrix} = 1.9 * 10^{14}$$

$$a_{7} = a_{3} + 2 (f_{4} (f_{3} f_{21} + f_{2} f_{31} + f_{1} f_{32}) + f_{3} (f_{2} f_{41} + f_{1} f_{42}) + f_{2} f_{1} f_{43}) = 2.26 * 10^{20}$$

Transfer function

$$\left|H(f)\right|_{dB} = \frac{\left|f^{4} + 1.62 * 10^{7} f^{3} + 7.19 * 10^{13} f^{2} + 1.03 * 10^{20} f + 4.2 * 10^{25}\right|}{\sqrt{\left(f^{4} + 4.2 * 10^{25} - 1.9 * 10^{14} f^{2}\right)^{2} + \left(2.26 * 10^{20} f - 3.44 * 10^{7} f^{3}\right)^{2}}}$$

3. Proposed Model of 4-Stage Passive RC Network Analysis of System Model (Positive Frequency)

$$|H| = \frac{f^4 + 1.62 * 10^7 f^3 + 7.19 * 10^{13} f^2 + 1.03 * 10^{20} f + 4.2 * 10^{25}}{\sqrt{\left(f^4 + 4.2 * 10^{25} - 1.9 * 10^{14} f^2\right)^2 + \left(2.26 * 10^{20} f - 3.44 * 10^7 f^3\right)^2}}; f > 0$$

$$|H| = \begin{cases} 1; f \to 0 \\ 1.16; f = 1.55 * 10^{5} \\ 0.938; f = 25.5 * 10^{5} \\ 1.18; f = 405 * 10^{5} \\ 1; f \to \infty \end{cases} 20 \log |H| = \begin{cases} 0 dB; f \to 0 \\ 1.33 dB; f = 1.55 * 10^{5} \\ -0.55 dB; f = 25.5 * 10^{5} \\ 1.42 dB; f = 405 * 10^{5} \\ 0 dB; f \to \infty \end{cases}$$

3. Proposed Model of 4-Stage Passive RC Network Analysis of System Model (Negative Frequency)

$$\begin{split} |H|_{dB} &= \frac{f^4 - 1.62 * 10^7 f^3 + 7.19 * 10^{13} f^2 - 1.03 * 10^{20} f + 4.2 * 10^{25}}{\sqrt{\left(f^4 + 4.2 * 10^{25} - 1.9 * 10^{14} f^2\right)^2} + \left(2.26 * 10^{20} f - 3.44 * 10^7 f^3\right)^2}; f < 0 \\ 0; f &= -7 * 10^5 \\ 0; f &= -7 * 10^5 \\ 0; f &= -15 * 10^5 \\ 0; f &= -15 * 10^5 \\ 0; f &= -40 * 10^5 \\ 0; f &= -40 * 10^5 \\ 0; f &= -100 * 10^5 \\ 1; f &\to -\infty \end{split}$$

3. Proposed Model of 4-Stage Passive RC Network Simulation Results of 4-Stage Passive RC Network

Outline

- 1. Research Background
 - Applications of RC Poly-phase Network
 - Analog Complex Signal Processing Concepts
- 2. Analysis of 4-Stage Passive RC Network
 - Frequency Responses
 - Image Rejection Ratio
- 3. Proposed Model of 4-Stage Passive RC Network
 - Model of 4-Stage Passive RC Network
 - Simulation Results

4. Conclusions

4. Conclusions

This Work:

- Derivation of transfer function of poly-phase network based on superposition principle
- Mathematical analysis and model of 4-stage passive RC poly-phase filter
- Image rejection ratio: -33dB

Future of Work

- Analysis of IQ mismatches of poly-phase signals
- Analysis of Parasitic of RC components

Thanks for your kind attention!

Questions & Answers

- 1) Will the variations of R and C components change the characteristics of this filter?
 - \rightarrow Yes, they will.

(The variations of R and C components will cause the IQ mismatches. Therefore, the image rejection ratio will be changed.)

- 2) Are the simulation results of RC poly-phase filter in this research best?
 - →No, they aren't.

(There are some design trade-offs in this research. So, these simulation results are acceptable for the design targets.)