International Conference on Technology and Social Science 2019 (ICTSS 2019) May 8-10, 2019 (Kiryu Japan)

## Fast Response, Small Ripple, Low Noise Switching Converter with Digital Charge Time Control and EMI Harmonic Filter

#### Minh Tri Tran<sup>a</sup>, Yifei Sun<sup>b</sup>, Noriyuki Oiwa<sup>c</sup> Yasunori Kobori<sup>d</sup>, Anna Kuwana<sup>e</sup>, Haruo Kobayashi<sup>f</sup>







## Outline

- 1. Research Background
  - Applications of Switching Power Supply
  - Basic Switching Converter Architecture
- 2. Analysis of Step-down Switching Converter
  - Conventional State-Space Technique
  - Superposition Principle
- **3. Proposed Design of Buck Converter** 
  - Ripple Voltage Reduction with Notch Harmonic Filters
  - Simulation Results
- 4. Conclusions

# Outline

- 1. Research Background
  - Applications of Switching Power Supply
  - Basic Switching Converter Architecture
- 2. Analysis of Step-down Switching Converter
  - Conventional State-Space Technique
  - Superposition Principle
- **3. Proposed Design of Buck Converter** 
  - Ripple Voltage Reduction with Notch Harmonic Filters
  - Simulation Results
- 4. Conclusions

**Typical Applications of Switching Power Supply** 



#### **Research Objective**

Objective

**Development of switching power supply with** 

- Fast response & high efficiency
- Low EMI noise
- Small output ripple

### Approach

 Analysis of Buck converter system using statespace technique and superposition principle
 EMI reduction using harmonic notch filters

#### **Design Achievements**

Achievements

- Derivation of transfer function of buck converter based on superposition principle
- Overshoot cancelation based on balanced chargedischarge time condition:

$$|Z_L| = |Z_C| = 2R \implies \omega L = \frac{1}{\omega C} = 2R \qquad \omega = \frac{1}{\sqrt{LC}} = \frac{1}{2RC}$$

- Ripple reduction from 30mVpp into 0.4mVpp
   Two harmonic notch filters:
  - -7dB at the 1<sup>st</sup> harmonic  $f_{1^{st} harmonic} = \frac{1}{2\pi \sqrt{L_2 C_2}} = 100 kHz$ 
    - -2dB at the 2<sup>nd</sup> harmonic  $f_{2^{nd} harmonic} = \frac{1}{2\pi \sqrt{L_3 C_3}} = 300 kHz$

### **1. Research Background** Basic Switching Converter Architecture



## High Efficiency Switching

Reduce energy consumption

- Extend battery operating time
- ➔ Minimize costs of systems

#### Merits

- Downsizing
- Light Weight
- High Efficiency



### **1. Research Background** Trade-offs of Switching Power Supply

|            | Linear<br>Regulator | Switching Regulator |             |
|------------|---------------------|---------------------|-------------|
|            |                     | Inductive           | Charge Pump |
| Efficiency | 20-60%              | 90-95%              | 75-90%      |
| Ripple     | Very low            | Low                 | Moderate    |
| EMI Noise  | Very low            | Moderate            | Low         |
| PCB Area   | Very small          | Largest             | Medium      |
| Cost       | Lowest              | Highest             | Medium      |

**Required EMI Noises of Switching Converter** 

Spectrums of PWM pulse < Standard Level



#### **1. Research Background** Superposition Principle



#### **1. Research Background** Example of Superposition Principle



$$V_{A} = \frac{V_{1}j\omega L_{1} - V_{2}\omega^{2}R_{1}L_{1}C_{1} + V_{3}R_{1}}{j\omega L_{1} - \omega^{2}R_{1}L_{1}C_{1} + R_{1}}$$

### **1. Research Background** Switching Regulator



### **1. Research Background** Analysis of Switching Control Sources



### **1. Research Background** Analysis of Square Wave



### **1. Research Background** Harmonics of PWM Signals



#### **1. Research Background** Simulations of Harmonics of PWM Signals



#### **Spectrums of PWM signals**



### **1. Research Background** Harmonic Notch Filters



### **1. Research Background** Transfer Function of Harmonic Notch Filters

$$V_{out}\left[\frac{1}{Z_{in}} + \sum_{k=1}^{n} \left(\frac{j\omega_k C_k}{1 - \omega_k^2 C_k L_k}\right)\right] = \frac{V_{in}}{Z_{in}}$$

#### **Transfer Function**

$$H(j\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{Z_{in} \left[ \frac{1}{Z_{in}} + \sum_{k=1}^{n} \left( \frac{j\omega_{k}C_{k}}{1 - \omega_{k}^{2}C_{k}L_{k}} \right) \right]}$$
$$H(j\omega) = \frac{1}{1 + Z_{in} \sum_{k=1}^{n} \left( \frac{j\omega_{k}C_{k}}{1 - \omega_{k}^{2}C_{k}L_{k}} \right)} = \begin{cases} 1 & ; \omega^{2} \neq \frac{1}{L_{k}C_{k}}; Z_{in} \approx 0\\ 0 & ; \omega^{2} = \frac{1}{L_{k}C_{k}}; Z_{in} \approx 0 \end{cases}$$

 $f_k = \omega_k / 2\pi$  : notch frequency of  $L_k C_k$  filter

#### **1. Research Background** Frequency Response of Harmonic Notch Filters



# Outline

- 1. Research Background
  - Applications of Switching Power Supply
  - Basic Switching Converter Architecture
- 2. Analysis of Step-down Switching Converter
  - Conventional State-Space Technique
  - Superposition Principle
- **3. Proposed Design of Buck Converter** 
  - Ripple Voltage Reduction with Notch Harmonic Filter
  - Simulation Results
- 4. Conclusions

### 2. Analysis of Step-down Switching Converter Conventional State-Space Technique



•  

$$x = \frac{dx}{dt} = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

#### Advantages

- $\circ\,$  Modeling, analyzing, and designing a wide range of systems
- Nonlinear, time-varying, multivariable systems
- Disadvantages
  - $\circ\,$  Not as intuitive as classical method

#### 2. Analysis of Step-down Switching Converter Conventional State-Space Technique

$$\begin{aligned} \dot{x}(t) &= Ax(t) + Bu(t) \\ \text{Laplace} \\ \text{transform} \\ & \bigvee \\ & X(s) - x(0) = AX(s) + BU(s) \\ & Y(s) = CX(s) + DU(s) \end{aligned}$$

assume x(0) = 0

$$X(s) = (sI - A)^{-1}BU(s)$$
$$Y(s) = [C(sI - A)^{-1}B + D]U(s)$$

$$\frac{Y(s)}{U(s)} = C[sI - A]^{-1}B + D = \frac{Cadj[sI - A]B + \det[sI - A]D}{\det[sI - A]}$$

### 2. Analysis of Step-down Switching Converter Linear Graph Models of Network



### **2. Analysis of Step-down Switching Converter** Linear Graph Models of Buck Converter



### **2. Analysis of Step-down Switching Converter** Conventional State-Space Technique (Switch ON)



### **2. Analysis of Step-down Switching Converter** Conventional State-Space Technique (Switch ON)

 $\begin{cases} sI_L(s) = 0I_L(s) - \frac{1}{L}V_C(s) + \frac{1}{L}V_i(s) \\ sV_C(s) = \frac{I_L(s)}{C} - \frac{V_C(s)}{RC} + 0V_i(s) \end{cases}$ Laplace Transform  $\begin{cases} \frac{1}{L}V_{C}(s) + sC\left(s + \frac{1}{RC}\right)V_{C}(s) &= \frac{1}{L}V_{i}(s) \\ I_{L}(s) &= C\left(s + \frac{1}{RC}\right)V_{C}(s) \end{cases}$  $V_{C}(s) = \frac{\frac{1}{LC}}{\left(s^{2} + \frac{s}{RC} + \frac{1}{LC}\right)}V_{i}(s)$  $\frac{d^2 v_C}{dt^2} + \frac{1}{RC} \frac{d(v_C)}{dt} + \frac{1}{LC} v_C = \frac{1}{LC} v_i \quad v_C(t) = V_{out}(t)$ 

#### 2. Analysis of Step-down Switching Converter Conventional State-Space Technique (Switch ON)

$$\frac{d^{2}V_{out}(t)}{dt^{2}} + \frac{1}{RC}\frac{dV_{out}(t)}{dt} + \frac{V_{out}(t)}{LC} = 0$$

$$V_{out}(t) = Ae^{st} = A_{1}e^{s_{1}t} + A_{2}e^{s_{2}t}$$

$$\frac{d^{2}(Ae^{st})}{dt^{2}} + \frac{1}{RC}\frac{d(Ae^{st})}{dt} + \frac{(Ae^{st})}{LC} = 0$$

$$s^{2} + \frac{1}{RC}s + \frac{1}{LC} = 0$$

$$s_{1} = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^{2} - \frac{1}{LC}} \lor s_{2} = -\frac{1}{2RC} - \sqrt{\left(\frac{1}{2RC}\right)^{2} - \frac{1}{LC}}$$

$$\omega_{2RC} = \frac{1}{2RC}; \omega_{LC} = \frac{1}{\sqrt{LC}};$$

$$V_{charge}(t) = A_{ch1}e^{\left(-\omega_{2RC} + \sqrt{(\omega_{2RC})^{2} - \omega_{LC}^{2}}\right)t} + A_{ch2}e^{\left(-\omega_{2RC} - \sqrt{(\omega_{2RC})^{2} - \omega_{LC}^{2}}\right)t}$$

### **2. Analysis of Step-down Switching Converter** Conventional State-Space Technique (Switch OFF)



### **2. Analysis of Step-down Switching Converter** Conventional State-Space Technique (Switch OFF)



#### **2. Analysis of Step-down Switching Converter** Conventional State-Space Technique (Switch OFF)

$$\frac{d^{2}V_{dis}(t)}{dt^{2}} - \frac{1}{RC} \frac{dV_{dis}(t)}{dt} + \frac{V_{dis}(t)}{LC} = 0$$

$$V_{dis}(t) = A_{dis}e^{st} = A_{3}e^{s_{dis1}t} + A_{3}e^{s_{dis2}t}$$

$$\frac{d^{2}(A_{dis}e^{st})}{dt^{2}} - \frac{1}{RC} \frac{d(A_{dis}e^{st})}{dt} + \frac{(A_{dis}e^{st})}{LC} = 0$$

$$s^{2} - \frac{1}{RC}s + \frac{1}{LC} = 0$$

$$s_{dis1} = \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^{2} - \frac{1}{LC}} \lor s_{dis2} = \frac{1}{2RC} - \sqrt{\left(\frac{1}{2RC}\right)^{2} - \frac{1}{LC}}$$

$$\omega_{2RC} = \frac{1}{2RC}; \omega_{LC} = \frac{1}{\sqrt{LC}};$$

$$V_{discharge}(t) = A_{dis1}e^{\left(\omega_{2RC} + \sqrt{(\omega_{2RC})^{2} - \omega_{LC}^{2}}\right)t} + A_{dis2}e^{\left(\omega_{2RC} + \sqrt{(\omega_{2RC})^{2} - \omega_{LC}^{2}}\right)t}$$

### 2. Analysis of Step-down Switching Converter Conventional State-Space Technique

$$\overline{V_{out}} = \frac{1}{\left(T_{ON} + T_{OFF}\right)} \begin{pmatrix} \int_{0}^{T_{ON}} \left(A_{ch1}e^{\left(-\omega_{2RC} + \sqrt{(\omega_{2RC})^2 - \omega_{LC}^2}\right)t} + A_{ch2}e^{\left(-\omega_{2RC} - \sqrt{(\omega_{2RC})^2 - \omega_{LC}^2}\right)t}\right) dt \\ + \int_{T_{OFF}}^{T_{OFF}} \left\{A_{dis1}e^{\left(\omega_{2RC} + \sqrt{(\omega_{2RC})^2 - \omega_{LC}^2}\right)t} + A_{dis2}e^{\left(\omega_{2RC} - \sqrt{(\omega_{2RC})^2 - \omega_{LC}^2}\right)t}\right\} dt \end{pmatrix}$$

$$\omega_{2RC} = \omega_{LC} \Leftrightarrow \omega = \frac{1}{\sqrt{LC}} = \frac{1}{2RC} \qquad \left|Z_L\right| = \left|Z_C\right| = 2R \\ \omega L = \frac{1}{\omega C} = 2R \qquad \left|Balanced Charge-Discharge \\ Time Condition \right|$$

$$\overline{V_{out}} = \frac{1}{\left(T_{ON} + T_{OFF}\right)} \left(\int_{0}^{T_{ON}} A_{ch} e^{-\omega t} dt + \int_{T_{ON}}^{T_{OFF}} A_{dis} e^{\omega t} dt\right)$$

#### 2. Analysis of Step-down Switching Converter Conventional Switching Buck Converter

| Input Voltage (Vin)          | 12V    |  |
|------------------------------|--------|--|
| Output Voltage (Vo)          | 5.0V   |  |
| <b>Output Current (Io)</b>   | 1A     |  |
| <b>Clock Frequency (Fck)</b> | 100kHz |  |

**Switching Buck Converter** 



 $R = 5\Omega, L = 318\mu H, C = 3.18\mu F$ 

$$f_{cut\_off} = \frac{1}{2\pi\sqrt{LC}} = 5kHz$$

#### 2. Analysis of Step-down Switching Converter Analysis Model of Buck Converter

Proposed analysis model  $V_o\left(\frac{1}{Z_L} + \frac{1}{Z_C} + \frac{1}{R}\right) = \frac{V_{in}}{Z_L}$ **Superposition** principle  $V_o = V_{in} \frac{RZ_C}{R(Z_L + Z_C) + Z_L Z_C}$ **Output Voltage**  $H = \frac{V_o}{V_{in}} = \frac{RZ_C}{R(Z_I + Z_C) + Z_I Z_C}$ **Transfer Function**  $H(j\omega) = \frac{\frac{1}{LC}}{\left(j\omega\right)^2 + j\omega\frac{1}{RC} + \frac{1}{LC}}$ 

### 2. Analysis of Step-down Switching Converter Balanced Charge-Discharge Time Condition



#### 2. Analysis of Step-down Switching Converter Transient Response of Buck Converter



### 2. Analysis of Step-down Switching Converter Max Power Propagation

**Transfer**  $H(j\omega) = \frac{\overline{LC}}{\left(j\omega + \frac{1}{2PC}\right)^2 + \frac{1}{LC} - \left(\frac{1}{2PC}\right)^2}$ Transfer Max **Power**  $\frac{1}{LC} - \left(\frac{1}{2RC}\right)^2 = 0 \quad \implies \quad \omega = \frac{1}{\sqrt{LC}} = \frac{1}{2RC}$ **Rewritten Transfer**  $H(j\omega) = \frac{\frac{1}{LC}}{\left(j\omega + \frac{1}{2RC}\right)^2} \quad \blacktriangleright \quad |H(\omega)| = \frac{\frac{1}{LC}}{\left(\frac{1}{2RC}\right)^2 + \omega^2}$  $\omega_{cut\_off} = \frac{1}{\sqrt{LC}} = \frac{1}{2RC} \qquad or \qquad f_{cut\_off} = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{4\pi RC}$  $|H(\omega)| = \frac{1}{2}$  or  $|H(\omega)|_{dB} = 20\log(\frac{1}{2}) = -3dB$ 

#### 2. Analysis of Step-down Switching Converter Time Behavior of Buck Converter

**Transfer Function**  $H(j\omega) = \frac{\overline{LC}}{\left(j\omega + \frac{1}{2RC}\right)^2}$  Here  $s = j\omega$  $H(s) = \frac{\frac{1}{LC}}{\left(j\omega + \frac{1}{2RC}\right)^2} = \frac{\omega^2}{\left(s + \omega\right)^2}$ Laplace Inversion  $h(t) = \mathcal{L}^{-1} \left\{ \frac{\omega^2}{(s+\omega)^2} \right\} = \omega^2 t e^{-\omega t}$ Form **Output Voltage**  $\frac{V_{out}(t)}{V_{out}(t)} = h(t) = \omega^2 t e^{-\omega t} \Rightarrow V_{out}(t) = \omega^2 t e^{-\omega t} V_{in}(t)$  $V_{out}\left(t\right) = \left(\frac{1}{2RC}\right)^2 t e^{-\left(\frac{1}{2RC}\right)^t} V_{in}\left(t\right) \quad \text{Here} \quad f_{cut\_off} = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{4\pi RC}$ 

### **2. Analysis of Step-down Switching Converter** Simulation of Balanced Charge-Discharge Time



### **2. Analysis of Step-down Switching Converter** Waveforms of Balanced Charge-Discharge Time



#### 2. Analysis of Step-down Switching Converter Ripple Voltages and EMI Noises

#### **Ripple voltages**

#### **Spectrum of ripple voltages**



# Outline

- 1. Research Background
  - Applications of Switching Power Supply
  - Basic Switching Converter Architecture
- 2. Analysis of Step-down Switching Converter
  - Conventional State-Space Technique
  - Superposition Principle
- 3. Proposed Design of Buck Converter
  - Ripple Voltage Reduction with Notch Harmonic Filters
  - Simulation Results
- 4. Conclusions

#### **3. Proposed Design of Buck Converter** Proposed Analysis Model of Buck Converter



$$H = \frac{V_o}{V_{in}} = \frac{Z_C R (Z_{C2} + Z_{L2}) (Z_{C3} + Z_{L3})}{\left\{ \left[ R (Z_C + Z_L) + Z_C Z_L \right] (Z_{C2} + Z_{L2}) + R Z_C Z_L \right\} (Z_{C3} + Z_{L3}) + R Z_C Z_L (Z_{C2} + Z_{L2}) - \frac{1}{LC} \left( \frac{1}{L_2 C_2} + (j\omega)^2 \right) \left( \frac{1}{L_3 C_3} + (j\omega)^2 \right) \right\} + \frac{1}{LC} \left( \frac{1}{L_2 C_2} + (j\omega)^2 \right) + \frac{1}{LC} \left( \frac{1}{L_2 C_2} + (j$$

#### **3. Proposed Design of Buck Converter** Simulation of Proposed Buck Converter



#### **3. Proposed Design of Buck Converter** Frequency Response of Proposed Buck Converter



#### **3. Proposed Design of Buck Converter** Analysis of Feedback Voltage Control



#### **3. Proposed Design of Buck Converter** Proposed Structure of Buck Converter System



| Input Voltage (Vin)          | 12V          | Current Step (⊿Io) | <b>1A</b>    |
|------------------------------|--------------|--------------------|--------------|
| <b>Output Voltage (Vo)</b>   | <b>5.0</b> V | Output Ripple      | 0.4mVpp      |
| <b>Output Current (Io)</b>   | <b>1A</b>    | Over-shoot         | <b>0.1mV</b> |
| <b>Clock Frequency (Fck)</b> | 100kHz       | Under-shoot        | <b>0.1mV</b> |

#### **3. Proposed Design of Buck Converter** Simulation Waveforms of Proposed System



#### **3. Proposed Design of Buck Converter** Transient Response of Proposed System



# Outline

- 1. Research Background
  - Applications of Switching Power Supply
  - Basic Switching Converter Architecture
- 2. Analysis of Step-down Switching Converter
  - Conventional State-Space Technique
  - Superposition Principle
- **3. Proposed Design of Buck Converter** 
  - Ripple Voltage Reduction with Notch Harmonic Filters
  - Simulation Results

#### 4. Conclusions

## 4. Conclusions

#### This work:

Balanced charge-discharge time condition

$$|Z_L| = |Z_C| = 2R \implies \omega L = \frac{1}{\omega C} = 2R \qquad \omega = \frac{1}{\sqrt{LC}} = \frac{1}{2RC}$$

- Analysis model of Buck converter system based on state-space technique and superposition principle
- EMI and ripple voltage improvement using two harmonic notch filters

→ Ripple reduction from 30mVpp into 0.4mVpp
Future of Work

• Analysis of parasitic of RLC and other components

# **Thanks for your kind attention!**



# **Questions & Answers**

- 1) Up to now, is the balanced charge-discharge time condition presented?
  - →No, it isn't.

(The proposed condition is used to detect the overshoot voltage of Buck converter.)

2) Why did the author derive the transfer function of Buck converter network based on the superposition principle?

→ Because the frequency responses of Buck converter can be plotted by hand calculation.

(As the Buck converter is analyzed, the proposed method is quicker than the state-space technique.)

# **Questions & Answers**

- 3) Are the properties of Buck converter different when the state-space technique and the superposition principle are used to analyze this system?
  - →No, they aren't.

(If the transfer function of a network is defined, the properties of this network are expressed by the transient response and the frequency response.)