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Abstract 

Proposed stability test for a ladder RLC low-pass filter 
are presented. The self-loop function of this filter is derived 
and analyzed based on the widened superposition principle. 
The alternating current conservation technique is proposed 
to measure the self-loop function. An active inductor is 
replaced by a general impedance converter. Research 
results show that the values of the selected passive 
components (resistors, capacitors, and inductors) in the 
filter can cause a damped oscillation noise when the stable 
conditions for the transfer function of this network are not 
satisfied. 

Keywords: Ladder RLC LPF, Stability Test, Widened 
Superposition, Self-loop Function, Voltage Injection. 

1. Introduction 

Analog filters prove essential in removing noise signals 
that may accompany a desired signal(1). Passive low-pass 
filters employ RLC circuits, but they become impractical at 
very low frequencies because of large physical size of 
inductors and capacitors(2). Moreover, feedback control 
theories are widely applied in the processing of analogue 
signals(3). In conventional analysis of a feedback system, 
the term of “Aβ(s)” is called loop gain when the 
denominator of the transfer function is simplified as 
1+Aβ(s), where A(s), β(s), are the open loop gain, and 
feedback gain, respectively. The stability of a feedback 
network is determined by the magnitude and phase plots of 
the loop gain. However, the passive filter is not a closed 
loop system. Furthermore, the denominator of the transfer 
function of an analog filter, regardless of active or passive 
is also simplified as 1+L(s), where L(s) is called “self-loop 
function”. Therefore, the term of “self-loop function” is 

proposed to define L(s) for both cases with and without 
feedback filters. This paper provides an introduction to the 
derivation of the transfer function, the measurement of 
self-loop function and stability test for a ladder RLC 
low-pass filter.  

The main contribution of this paper comes from the 
stability test for a ladder RLC low-pass filter based on the 
widened superposition principle and the alternating current 
conservation measurement. The background knowledge for 
the research is presented in Section 2. Section 3 and Section 
4 mathematically analyze illustrative first-and second-order 
denominator complex functions considered in details. 
SPICE simulation results for the proposed design of an 
active ladder RLC low pass filter are described in Section5. 
A brief discussion of the research results is given in 
Section6. The main points of this work are summarized in 
Section7. We have collected a few important notions and 
results from analysis in Appendix for easy references. 

2. Design considerations for ladder RLC low- 
pass filter  

2.1. Widened superposition principle 

In this section, we propose a new concept of the 
superposition principle which is useful when we derive the 
transfer function of a network. The conventional 
superposition theorem is used to find the solution to linear 
networks consisting of two or more sources (independent 
sources, linear dependent sources) that are not in series or 
parallel. To consider the effects of each source 
independently requires that sources be removed and 
replaced without affecting the final result. To remove a 
voltage source when applying this theorem, the difference 
in potential between the terminals of the voltage source 
must be set to zero (short circuit); removing a current 

 

DOI: 10.12792/iciae2020.038 198 

  



source requires that its terminals be opened (open circuit). 
This procedure is followed for each source in turn, and then 
the resultant responses are added to determine the true 
operation of the circuit. There are some limitations of 
conventional superposition theorem. Superposition cannot 
be applied to power effects because the power is related to 
the square of the voltage across a resistor or the current 
through a resistor. Superposition theorem cannot be applied 
for non-linear circuit (diodes or transistors). In order to 
calculate the load current or the load voltage for the several 
choices of the load resistance of the resistive network, one 
needs to solve for every source voltage and current, perhaps 
several times. With the simple circuit, this is fairly easy but 
in a large circuit this method becomes a painful experience. 

In this paper, the nodal analysis on circuits is used to obtain 
multiple Kirchhoff current law equations. The term of 
"widened superposition" is proposed to define a general 
superposition principle which is the standard nodal analysis 
equation, and simplified for the case when the impedance 
from node A to ground is infinity and the current injection 
into node A is 0. In a circuit having more than one 
independent source, we can consider the effects of all the 
sources at a time. The widened superposition principle is 
used to derive the transfer function of a network(4,5). Energy 
at one place is proportional with their input sources and the 
resistance distances of transmission spaces. Let EA(t) be 
energy at one place of multi-sources Ei(t) which are 
transmitted on the different resistance distances di (R, ZL, 
and ZC in electronic circuits) of the transmission spaces as 
shown in Fig. 1. Widened superposition principle is defined 
as  

n n
i

A
i=1 i=1i i

E (t)1E (t) =
d d   (1) 

If the transmission spaces are divided into small branches, 
energy at every small place will be calculated by the direct 
resistance distances of every branch. Here, dsub2_i are 
sub-resistance distances. In this case, the resistance distance 
of each node is calculated from the input loop to the output 
loop. The import of these concepts into circuit theory is 
relatively new with much recent progress regarding filter 
theory, analysis and implementation. 
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Fig. 1. Energy at one node based on superposition principle 
and sub-branches. 

2.2. Complex function 

In this section, we describe a transfer function as the form 
of a complex function where the variable is an angular 
frequency. In frequency domain, the transfer function and 
the self-loop function of a filter are complex functions. 
Complex functions are typically represented in two forms: 
polar or rectangular. The polar form and the rectangular 
representation of a complex function H(jω) is written as 

       
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 
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(3) 

where Re{H(jω)} is the real part of H(jω) and Im{H(jω)} is 
the imaginary part of H(jω), and j is the imaginary operator 

j2 = -1. The real quantity        2 2
Re ImH j H j   

is known as the amplitude or magnitude, the real quantity 
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
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is called the angle  H j , which is the 

angle between the real axis and  H j . The angle may be 

expressed in either radians or degrees and real quantity 
  
  

Im
Re

H j
H j



  is called the argument   Arg H j  which is the 

ratio between the real part and the imaginary part of H(jω). 
The operations of addition, subtraction, multiplication, and 
division are applied to complex functions in the same 
manner as that they are to complex numbers. Complex 
functions are typically expressed in three forms: 
magnitude-angular plots (Bode plots), polar charts (Nyquist 
charts), and magnitude-argument diagrams (Nichols 
diagrams). In this paper, the stability test is performed on 
the magnitude-angular charts. 
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2.3. Graph signal model for complex function 

In this section, we describe the graph signal model of a 
typical complex function which is the same as the graph 
signal model of a feedback system. A negative-feedback 
amplifier is an electronic amplifier that subtracts a fraction 
of its output from its input, so that negative feedback 
opposes the original signal. The applied negative feedback 
can improve its performance (gain stability, linearity, 
frequency response, step response) and reduce sensitivity to 
parameter variations due to manufacturing or environment. 
Thanks to these advantages, many amplifiers and control 
systems use negative feedback. However, the denominator 
complex functions are also expressed in the graph signal 
model which is the same as the negative feedback system.  
A general denominator complex function is rewritten as 

( ) ( )( )
( ) 1 ( )

out

in

V s A sH s
V s L s

 


 (4) 

This form is called the standard form of the denominator 
complex function. The output signal is calculated as 

   
( )( ) ( ) ( )out in out

L sV s A s V s V s
A s

 
  

  

 (5) 

Fig. 2 presents the graph signal model of a general 
denominator complex function. The feedback system is 
unstable if the closed-loop “gain” goes to infinity, and the 
circuit can amplify its own oscillation. The condition for 
oscillation is 

 2 1( ) 1 1 ;j kL s e k Z       (6) 

Through the self-loop function, a second-order denominator 
complex function can be found that is stable or not. The 
concepts of phase margin and gain margin are used to asset 
the characteristics of the loop function at unity gain. The 
conventional test of the loop gain, which is called 
“Barkhausen’s criteria”, is unity gain and -180o of phase in 
magnitude-phase plots (Bode plots)(6). 

 

Fig. 2. Graph signal model of general complex function. 

2.4. Alternating current conservation measurement 

In this section, we describe a mathematical way to measure 
the self-loop function based on the alternating current 
conservation when we inject an alternating signal sources 
(alternating current or voltage sources) and connect the 
input of the network into the alternating current ground (AC 
ground). In general, the term of “alternating current 
conservation” is proposed to define this technique. The 
main idea of this method is that the alternating current is 
conserved. In other words, at the output node the incident 
alternating current is equal to the transmitted alternating 
current. If we inject a alternating current source (or 
alternating voltage source) at the output node, the self-loop 
function can be derived by ratio of the incident voltage (Vinc 
) and the transmitted voltage (Vtrans) as shown in Fig. 
3.Compared to measurement results of the alternating 
current conservation with the conventional ones (voltage 
injection), they are the same.  
In order to break the feedback loop without disturbing the 
signal termination conditions, and ensure that the loop is 
opened for AC signals, a balun transformer inductor can be 
used to isolate the signal source from the original network 
as shown in Fig. 4. In this case, the values of resistors and 
inductors are very large. Compared to the proposed 
measurement with the conventional replica measurement, 
they are the same measurement results. Apply the widened 
superposition principle at Vinc and Vtrans nodes, and the 
self-loop function is derived as 

( ) ( )
( ) ( )
inc inc

trans
trans

V VL s V L s
A s A s V

    (7) 

 
Fig. 3. Derivation of self-loop function based on alternating 

current conservation. 
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Fig. 4. Derivation of self-loop function based on balun 
transformer inductor injection method. 

3. Analysis of first-order denominator 
complex function 

3.1. First-order denominator complex function 

In this section, we shall present the frequency response of a 
typical first-order denominator complex function. A general 
transfer function of the first-order denominator complex 
function is defined as in Eq. (8). Assume that all of the 
constant variables are not equal to zero. If the constant is 
smaller than zero, it is expressed as a complex number 

( 20 ja a a j a e     ).  In this paper, the angular 

of the constant is not written in details.  

1( )H s
as b




 (8) 

The simplified form of Eq. (8) is 
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(9) 

Here, the cut-off angular frequency is cut
b
a

  . The 

magnitude of the complex function decreases very fast from 
the cut-off angular frequency. Therefore, the high-order 
harmonics of a step input are significantly reduced when it 
goes into the network.  

3.2. Self-loop function of first-order denominator 
complex function 

In this section, the characteristics of the self-loop function 
L(s) of the first-order denominator complex function are 
investigated. From Eq. (9), the self-loop function is defined 
as in Eq. (10). Through this function, it is easy to find that 
the first-order denominator complex function is stable, 
because the phase does not change when the angular 
frequency goes from 0 to infinity. 
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Fig. 5. Models of RL LPF: (a) circuit, (b) measurement of 
self-loop function. 
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ja aL j j e
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

      (10) 

3.3. Analysis of RL low-pass filter 

In this section, we shall present the frequency response of a 
first-order denominator complex function which is used in 
the ladder RLC low-pass filter. Figs. 5(a) and 5(b) show the 
model of circuit and the measurement of the self-loop 
function for an RL low-pass filter using alternating current 
conservation technique. Apply the superposition principle at 
Vout node, and we get 

1 1 in
out

L L

V
V

Z R Z
 
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 

 (11) 

Then, the transfer function and the self-loop function are 
defined as in Eq. (12). Due to analysis in Section 3.2, the 
self-loop function of the RL low-pass filter is a stable 
system, because the phase does not change when the 
angular frequency goes from 0 to infinity.  

2
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Lin
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j L LL s j e
R R


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

 
   

 (12) 

3.4. Stability test for RL low-pass filter 

This section shows the stability test for the RL low-pass 
filter. The proposed model for this filter in Fig. 6(a) is 
designed at cut-off frequency f0 = 50kHz taking L =796 uH, 
and R=250 Ω. Fig. 6(b) shows the measurement of the 
self-loop function and Fig. 6(c) show the amplitude-phase 
plots of the transfer function and the self-loop function of 
the RL low-pass filter. At unity gain (50 Khz) of the 
self-loop function, the angular is 90 degrees. On the polar 
chart, real part of the self-loop function is equal to zero as 
shown in Fig 6(d). Compared to the simulation result with 
the mathematical analysis, they are the same. 
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Fig. 6. Design of RL LPF: (a) circuit, (b) measurement of 

self-loop function; (c), (d)magnitude-angular plots and 
polar chart of self-loop function. 

4. Analysis of second-order denominator 
complex function  

4.1. Second-order denominator complex function 

In this section, we shall analyze the frequency response of a 
typical second-order denominator complex function. This 
complex function is defined as in Eq. (13). Assume that all 
constant variables are not equal to zero.  

2

1( )H s j
as bs c

  
 

 (13) 

From Eq. (31) in Appendix A.1, the simplified complex 
function is written as in Eq. (14). 

2
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(14) 

In order to plot the magnitude-angular charts, the values of 
magnitude-angular of the complex function, which are 
calculated in Appendix A.1, are summarized on Table 1.  

In overdamped case, the magnitude of the complex function 
is so high from the first cut-off angular frequency 

2

1
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. Therefore, this 

gain will amplify the high order harmonics from ωcut1 to 
ωcut2 of an input signal which includes many harmonics. 

4.2. Damped oscillation noise 

In this section, we describe the response of a typical 
second-order denominator complex function to a step input 
or a square wave. Based on the Fourier series expansion of 
the square wave, the waveforms of the pulse wave are 
expressed in many functions of time with many different 
frequencies as shown in Fig. 7. The waveform function of a 
square wave is  

    1

1

sin 2 2 14( )
2 1k

k f t
S t

k











  (15) 

 In under-damped case, the high-order harmonics of the 
step signal are significantly reduced from the first 
cut-off angular frequency. Therefore, the rising time and 
falling time are rather short. In this case, the system is 
absolutely stable.  

 In case of critically damped, the rising time and falling 
time are longer than the underdamped case. Now, the 
system is marginally stable. The energy propagation is 
also maximal because this condition is equal to the 
balanced charge-discharge time condition(7). 

 In over-damped case of the complex function, the gain 
at the cut-off angular frequency will amplify the 
high-order harmonics of the step signal that causes the 
peaking or ringing. Ringing is an unwanted oscillation 
of a voltage or current. The term of “damped oscillation 
noise” is proposed to define this unwanted oscillation 
which fades away with time, particularly in the step 
response (the response to a sudden change in input). 
Damped oscillation noise is undesirable because it 
causes extra current to flow, which leads to thereby 
wasting energy and causing extra heating of the 
components. It can cause unwanted electromagnetic 
radiation to be emitted. Therefore, the system is 
unstable. 
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Fig. 7. Square wave: (a) waveform, spectrum, and (b) 
partial sums of Fourier series. 

4.3. Self-loop function of second-order denominator 
complex function 

In this section, we investigate the characteristics of the 
self-loop function L(s) on the magnitude-angular plots and 
the polar chart. The general transfer function and self-loop 
function are rewritten as in Eq. (16). The 
magnitude-angular values and the real-imagine values of 
the self-loop function, which are calculated in Appendix 

A.2, are summarized in Table 2. In this work, the self-loop 
function is sketched on the magnitude-angular charts and 
polar plots. 
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4.4. Analysis of second-order RLC low-pass filter 

In this section, we shall present the frequency 
response of a second-order RLC low-pass filter. 
Models of circuit and measurement of self-loop function for 
the second-order RLC low-pass filter are shown in Fig. 8. 
The transfer function and the self-loop function of this 
network, which are calculated in Appendix A.3., are 
simplified as 
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Table 1. Summary of magnitude-angular values of transfer function
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Table2. Summary of magnitude-angular values and real-imagine values of self-loop function
 

Case Underdamped critically damped Overdamped 
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2
b
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Fig. 8. Model of circuit and measurement of self-loop 

function for second-order RLC low-pass filter. 

Then, the denominator is modified as: 

 
   

2

2
2 2

4

1 12 1 2
2

R C
LH s

RCs RC
LC RC


         

 
(18) 

The constraints of the stability are defined as 

21 1 Instability
2LC RC

   
 

 (19) 

21 1 Marginal stability
2LC RC

   
 

 (20) 

21 1 Stability
2LC RC

   
 

 (21) 

If R, L and C components are chosen based on the balanced 
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charge and discharge time condition |ZL|=|ZC|=2R at cut-off 

angular frequency
2

1 1=
2LCLC RC RC

   , this system is 

called marginally stable(8).  

4.5. Stability test for RLC low-pass filter 

This section will present a stability test for an RLC 
low-pass filter. Three models of the second-order RLC 
low-pass filter are used to do the damped oscillation noise 
test. The marginally stable model is designed at cut-off 
frequency f0 = 50 kHz taking L =796 uH, C =3.18 nF, and 
R=250 Ω based on a balanced charge and discharge time 
condition as shown in Fig. 9(b). Figs. 9(a) and 9(c) are 
unconditionally stable (R=150), and unstable (R=500), 
respectively. Figs. 9(d), 9(e) and 9(f) are the measurements 
of the self-loop functions. Figure 10(a) represents the 
SPICE simulation results of the magnitude and phase of the 
RLC circuit on the frequency domain. In time domain, 
when the pulse signals go in to these models, the transient 
responses are shown in Figure 10(b).  

 

Fig. 9. Models of circuits and measurements of self-loop 
functions for RLC LPF; (a),(d) unconditionally stable, 

(b),(e) marginally stable, and (c),(f) unstable. 

The damped oscillation noise (red) occurs in case of the 
unstable network. The overshoot of the unstable system can 
cause extra current to flow, thereby wasting energy and 
cause extra heating of the components. The measurements 
of the self-loop functions of the proposed models on the 
polar chart and the magnitude-angular plots are shown in 
Figs. 14(c),(d). In theoretical calculation at the cut-off 
frequency 50 kHz is 76.3 degrees.

 
Fig. 10. Frequency response (a), transient response (b) and (c), (d) polar chart and magnitude-phase plots of self-loop 

function for second-order LPF; (brown) absolutely stable, (blue) marginally stable, (red) unstable. 
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Our measurement results of self-loop functions show that  

 In stable case, phase is 98 degrees at 50 kHz,(phase 
margin = 82 degrees). 

 In marginally stable case, phase is 102.4 degrees at 50 
kHz, (phase margin = 73.6 degrees). 

 In unstable case, phase margin is 116 degrees at 
50kHz,(phase margin = 64 degrees). 

On the polar plots of self-loop functions, the stability tests 
of these models are shown in Fig. 10(c). The characteristics 
of a self-loop function are divided into three regions: 
(brown) unconditionally stable, (blue) marginally stable, 
and (red) unstable. The simulation results and the values of 
theoretical calculation are unique. The constraints for 
passive components (R, L, C) are 

 Unconditionally stable (|ZL|=|ZC|>2R), phase margin is 
greater than 73.6 degrees at unity gain. 

 Marginally stable (|ZL|=|ZC|=2R), the phase margin is 
73.6 degrees at unity gain. 

 Unstable (|ZL|=|ZC|<2R), the phase margin is smaller 
than 73.6 degrees at unity gain. 

5. Design of ladder RLC low-pass filter 

5.1. Analysis of ladder RLC low-pass filter 

In this section, a ladder RLC low-pass filter is analyzed. 
This filter has been widely used because it is simple, 
versatile, and requires few components(9). The ladder RLC 
circuit and measurement of the self-loop function are 
shown in Figure 11. The ideal operational amplifiers are 
used and the effect of the Miller capacitor is neglected. The 
transfer function of this filter, which are calculated in 
Appendix A.4., is derived as 

1
1

1 2 2 2 2

1( )
1 1 1 11 1 L

C C C

H s
R

Z R
Z Z R Z R


      

                 

 

(22) 

 
From Eq. (22), the transfer function is rewritten as 

2 2 2 2
1

1
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1 1( )
1 1 1 11
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L
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C

H s
Z

Z R Z R
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Z
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
      
        

                    

 

(23) 

From Eq. (23), we found that there are two stable 
conditions for this filter. Let us divide this transfer function 
into H1(s) and H2(s). 
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2
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1
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1
1

1
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(b)

(c)  

Fig. 11. Models of ladder RLC LPF: (a) passive circuit, (b) 
active inductor using general impedance converter, (c) 

design of active ladder RLC LPF. 

The transfer function and the self-loop function of H1(s) are 
written as in Eq. (24). The characteristics of the self-loop 
function L1(s) are the same as in the analysis of the 
second-order RLC low-pass filter.   

 

1 1
2 2

2 2

1 1 1( ) ; ( )
1 11

L
C

L
C

H s L s Z
Z R

Z
Z R

 
          
   

 
(24) 

The transfer function and the self-loop function of H2(s) are 
written as in Eq. (25). 
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   

 

(25) 

When the frequency compensation is considered, the 
transfer function of a ladder RLC low-pass filter is a 
third-order denominator complex function as in Eq. (26). It 
is very difficult to investigate the stable regions of this 
complex function. So, the measurement of the self-loop 
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function is very important to do the stability test for the 
ladder RLC low-pass filter. In this work, we firstly design 
the second-stage of the filter based the marginally stable 
condition. Therefore, the overall stability of the filter is also 
satisfied. The transfer function and the self-loop function of 
the ladder RLC low-pass filter are rewritten as 

 
 

 
 

2
3 2

2 1 2 1 2 2

1 2 2 1 2 1 1 2

3 2
2 1 2 1 2 2

1 2 1 2 2 1 2 1

( )

1( )

RH s
s R LC C s L C R C

s L R R C R R C R R

s R LC C s L C R C
L s

R R s L R R C R R C


  
       

  
       

 
(26) 

 

5.2. Analysis of general impedance converter 

In this section, the passive inductor is replaced by a general 
impedance converter. The behavior of an inductor can be 
emulated by an active circuit(10). The general impedance 
converter is considered as a floating impedance as shown in 
Fig. 11(b).The feedback loops which are provided by the 
two op amps force V1 − V3 and V3 − V5 to zero. 

1 3 5V V V   (27) 

Apply the superposition at node V3, and we get 

2 4
3

2 2

1 1

C C

V V
V

R Z R Z
 

   
 

 (28) 

The impedance of active inductor is designed as R1, R2, R3, 
and ZC are chosen properly. The value of this inductor is  

3 2 32

1 1
L out out

C

R R RRZ Z sCZ
R Z R

   (29) 

Here, Zout is the output impedance. This circuit converts a 
resistor to an inductor. Fig. 10 shows the model of the 
proposed design of the active ladder RLC low-pass filter. 

5.3. SPICE simulations for ladder RLC LPF 

In this section, SPICE simulations are carried out using the 
ideal operational amplifier with the gain bandwidth (GBW) 
= 10MHz and DC value of open loop gain (A(s)) = 100000. 
The ladder RLC circuit in Fig. 12(a) is designed for cut-off 
frequency f0 = 50 kHz taking C1 =127 nF, C2 = 31.8 nF, 
R1= 25Ω, R2 = 250 Ω, and L1 = 796uH. Fig. 12(b) 
represents the activeladder RLC circuit designed with C1 
=127 nF, C2= 0.1 pF, C3=3.18 nF, R1= 25Ω, R2=R3= 1 
kΩ, R4= 50 kΩ, and R5= 250 Ω.  

 
Fig. 12. Proposed design of ladder low-pass filter; (a) 

passive model, (b) active model, (c) frequency response: 
(brown) passive, (purple) active.  

Fig. 12(c) represents the SPICE simulation results of the 
ladder RLC low-pass filter. The simulation results of the 
passive and the active ladder RLC low-pass filter are 
unique. 

6. Discussion 

The performance of a ladder RLC low-pass filter is 
determined by its loop self-loop function and step input 
responses. These measurements show how good a 
second-order low-pass filter is. The self-loop function of a 
low-pass filter is only important if it gives some useful 
information about relative stability or if it helps optimize 
the closed-loop performance. The self-loop function can be 
directly calculated based on the widened superposition 
principle. The alternating current conservation technique 
(voltage injection) can measure the self-loop function of 
low-pass filters. Compared to the research results with 
mathematical analysis, the properties of self-loop functions 
are the same. SPICE simulation results are included. 
Moreover, Nyquist theorem shows that the polar plot of 
self-loop function L(s) must not encircle the point (−1, 0) 
clockwise as s traverses a contour around the critical region 
clockwise in polar chart(11). However, Nyquist theorem is 
only used in theoretical analysis for feedback systems. 
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7. Conclusions 

This paper describes the approach to do the stability 
test for a ladder RLC low-pass filter. The transfer function 
of this filter is a third-order denominator complex function. 
Moreover, the term of “self-loop function” is proposed to 
define L(s) in a general transfer function. In order to show 
an example of how to define the operating region of a 
multiple feedback filter, first and second-order denominator 
complex functions are analyzed. In overdamped case, the 
filter will amplify the high order harmonics from the first 
cut-off angular frequency ωcut1 to the second cut-off angular 
frequency ωcut2 of a step input. This causes the unwanted 
noise which is called ringing or overshoot.  

The term of “damped oscillation noise” is proposed to 
define the ringing.  The values of the passive components 
used in the filter circuit were chosen directly by the stable 
conditions. The passive inductor is replaced by a general 
impedance converter. All of the transfer functions were 
derived based on the widened superposition principle and 
self-loop functions were measured according to the 
alternating current conservation technique.  

The obtained results were acquired to simulations using 
SPICE models of the devices, including the model of a 
two-stage operational amplifier. The frequency response 
from the proposed active ladder RLC low-pass filter is 
matched with the passive one.  

In this paper not only the results of the mathematical 
model but also the results of simulation of the designed 
circuits are provided, including the stability test. The 
simulation results and the values of theoretical calculation 
of the self-loop function are unique. Furthermore, managing 
power consumption of circuits and systems is one of the 
most important challenges for the semiconductor 
industry(12,13). Therefore, the damped oscillation noise test 
can be used to evaluate the stability of a feedback system. 
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Appendix 

A.1. Second-order denominator complex function 

From Eq. (13), the transfer function is rewritten as 
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The simplified form of Eq. (25) is 
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The magnitude-angular form of transfer function is 
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In critically damped case
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4
4 1( ) ; ( ) arctan

24 2 11

a
a bH j H j

b aa a
bb b

 
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(33) 

At the cut-off angular frequency
2cut
b
a

   , the 

magnitude-angular form of transfer function is 

 2
2( ) ; ( ) arctan

2
aH j H j

b
         (34) 

A.2. Self-loop function of second-order denominator 
complex function 

From Eq. (14), the self-loop function is rewritten as 

2 2 24 2 2( )
2

a a a c bL j j j
b b b a a
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       

 
(35) 

The magnitude-angular form of self-loop function is 

22 2 2 2

2 2 2

4 2 2( )
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4
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b b a a b

a
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(36) 

The real-imagine form of self-loop function is 

   
2 2 22 2 4Re ( ) ; Im ( )

2
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(37) 

In critically damped case
2

2
c b
a a

   
 

, the self-loop function is 

2arctan
22 44 4 2( ) 1

j
a

ba a a aL j j j e
b b b b

 
 
 
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                    
     

 (38) 

At the angular frequency b
a

  , the magnitude-angular 

form of self-loop function is 

( ) 4 2; ( ) arctan( 1) 45oL j L         (39) 

The real-imagine form of self-loop function is 

   Re ( ) 4;Im ( ) 4L j L j      (40) 

At the angular frequency
2cut
b
a

  , the magnitude-angular 

form of self-loop function is 

 ( ) 5; ( ) arctan 2 63.4oL j L j         (41) 

The real-imagine form of self-loop function is 

   Re ( ) 1; Im ( ) 2L j L j      (42) 

At unity gain of the self-loop function, we have  

24( ) 1 1 1u u u
a aL
b b

        
 

 (43) 

Solving Eq. (43), the angular frequency u  at unity gain is 

5 2
2u
b
a

    (44) 
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The relationship between the angular frequency u and 

the cut-off angular frequency 
2cut
b
a

  is  

5 2
5 2

u
u cut cut


     


 (45) 

At unity gain angular frequency 5 2
2u
b
a

   , the 

magnitude-angular form of self-loop function is 

2( ) 1; ( ) arctan 76.35
5 2

oL j L j
        
  

 (46) 

The real-imagine form of self-loop function is 

   Re ( ) 2 5; Im ( ) 2 5 2L j L j       (47) 

In underdamped case
2

2
c b
a a

   
 

, the self-loop function is 

2 2 24 2 2( )
2
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 (48) 

The magnitude-angular form of self-loop function is 

2
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2

4
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b b a a b
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(49) 

The real-imagine form of self-loop function is 

   
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2
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(50) 

At the angular frequency b
a

   , the magnitude-angular 

form of self-loop function is 
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(51) 

At the angular frequency
2cut
b
a

  , the magnitude-angular 

form of self-loop function is 
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(52) 

The real-imagine form of self-loop function is 

   
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(53) 

At unity gain angular frequency 5 2
2u
b
a

   , the 

magnitude-angular form of self-loop function is 
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(54) 

The real-imagine form of self-loop function is 
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(55) 

In overdamped case 
2

2
c b
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   
 

, the self-loop function is 
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(56) 

The magnitude-angular form of self-loop function is 

2
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(57) 

The real-imagine form of self-loop function is 
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(58) 

At the angular frequency b
a

   , the magnitude-angular 

form of self-loop function is 
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(59) 

The real-imagine form of self-loop function is 
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(60) 

At the angular frequency
2cut
b
a

  , the magnitude-angular 

form of self-loop function is 
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(61) 

At unity gain angular frequency 5 2
2u
b
a

   , the 

magnitude-angular form of self-loop function is 
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(62) 

The real-imagine form of self-loop function is 
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(63) 

A.3. RLC low-pass filter 
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( )outV s

1
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 R
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Figure 13. Circuit of RLC low-pass filter. 

Apply the widened superposition at output node
 

1 1 1 in
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C L L

V
V
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 (64) 

Then, the transfer function is 
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(65) 

The simplified form of Eq. (65) is 

 
2 2

1
1

1 11

LCH s LLCs s s s
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 
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(66) 

Then, the denominator is modified as 

The simplified form of Eq. (67) is 

A.4. Ladder RLC low-pass filter 

+
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( )outV sLZ sL
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Fig. 14. Passive Ladder RLC low-pass filter. 

Apply the widened superposition at node VA, we get
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(69) 

Do the same work at the output node, we get
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 (70) 

The transfer function of this filter is derived as 
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(71) 
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(67) 
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