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Abstract 

Proposed derivation and measurement of self-loop 
function for a second-order multiple feedback low-pass 
filter using Deboo integrator are introduced. The self-loop 
function of the filter is derived and analyzed based on the 
widened superposition principle. An alternating current 
conservation measurement is proposed to measure the 
self-loop function. Research results show that the selected 
passive components (resistors, capacitors) of the frequency 
compensation of Miller capacitors in the operational 
amplifier and in the multiple feedback low-pass filter can 
cause a damped oscillation noise when the stable conditions 
for the transfer functions of these networks are not satisfied. 

Keywords: Widened Superposition, Stability Test, 
Self-loop Function, Multiple Feedback LPF, Voltage 
Injection. 

1. Introduction 

Analog active filters are widely applied in modern 
electronics(1). One of the most famous active filters is the 
multiple feedback low-pass filter (MFB LPF)(2). Although 
the circuit was introduced since many years it is still 
receiving interest of researchers in modifying the frequency 
characteristics of this circuit to fit the new CMOS 
technology(3). Based on current trends in analog signal 
processing system development, the most important 
objective in transient stability process is to ensure global 
stability of large interconnected filters(4). Moreover, 
feedback control theories are widely applied in the 
processing of analog signals(5). In conventional analysis of a 
feedback system, the term of “Aβ(s)” is called loop gain 
when the denominator of the transfer function is simplified 
as 1+Aβ(s), where A(s), β(s), are the open loop gain, and 

feedback gain, respectively. The stability of a feedback 
network is determined by the magnitude and phase plots of 
the loop gain. However, a passive filter is not a closed loop 
system. Furthermore, the denominator of the transfer 
function of an analog filter, regardless of active or passive 
is also simplified as 1+L(s), where L(s) is called “self-loop 
function”. Therefore, the term of “self-loop function” is 
proposed to define L(s) for both cases with and without 
feedback filters. This paper provides an introduction to the 
derivation of the transfer function, the measurement of 
self-loop function and stability test for a second-order 
multiple feedback low-pass filter based on the alternating 
current conservation measurement and the widened 
superposition principle. In the research not only the results 
of the mathematical models but also the results of 
simulation of the designed circuits are provided, including 
the stability test. 

The main contribution of this paper comes from the 
stability test for a second-order multi feedback low-pass 
filter using the Deboo integrator based on the widened 
superposition and the voltage injection technique. The 
background knowledge is presented in Section 2. Section3 
mathematically analyzes illustrative first-and second-order 
denominator complex functions considered in details. 
Section4 presents the stability test for a mathematical 
model of the two-stage operational amplifier which is used 
in the multiple feedback circuit. SPICE simulation results 
and the stability test for the proposed design filter are 
described in Section 5. A brief discussion of the research 
results is given in Section 6. The main points of this work 
are summarized in Section 7. We have collected a few 
important notions and results from analysis in Appendix for 
easy references. 

2. Design considerations for multiple 
feedback low-pass filter 
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2.1. Widened superposition principle 

In this section, we propose a new concept of the 
superposition principle which is useful when we derive the 
transfer function of a network. The conventional 
superposition theorem is used to find the solution to linear 
networks consisting of two or more sources (independent 
sources, linear dependent sources) that are not in series or 
parallel. To consider the effects of each source 
independently requires that sources be removed and 
replaced without affecting the final result. To remove a 
voltage source when applying this theorem, the difference 
in potential between the terminals of the voltage source 
must be set to zero (short circuit); removing a current 
source requires that its terminals be opened (open circuit). 
This procedure is followed for each source in turn, and then 
the resultant responses are added to determine the true 
operation of the circuit. There are some limitations of 
conventional superposition theorem. Superposition cannot 
be applied to power effects because the power is related to 
the square of the voltage across a resistor or the current 
through a resistor. Superposition theorem cannot be applied 
for non-linear circuit (diodes or transistors). In order to 
calculate the load current or the load voltage for the several 
choices of the load resistance of the resistive network, one 
needs to solve for every source voltage and current, perhaps 
several times. With the simple circuit, this is fairly easy but 
in a large circuit this method becomes a painful experience. 

In the paper, the nodal analysis on circuits is used to obtain 
multiple Kirchhoff current law equations. The term of 
"widened superposition" is proposed to define a general 
superposition principle which is the standard nodal analysis 
equation, and simplified for the case when the impedance 
from node A to ground is infinity and the current injection 
into node A is 0. In a circuit having more than one 
independent source, we can consider the effects of all the 
sources at a time. The widened superposition principle is 
used to derive the transfer function of a network(6,7). Energy 
at one place is proportional with their input sources and the 
resistance distances of transmission spaces. Let EA(t) be 
energy at one place of multi-sources Ei(t) which are 
transmitted on the different resistance distances di (R, ZL, 
and ZC in electronic circuits) of the transmission spaces as 
shown in Fig. 1. Widened superposition principle can be 
defined as  

n n
i

A
i=1 i=1i i

E (t)1E (t) =
d d   (1) 

1d

2d

3d
4d

5d
nd …

1E (t)

2E (t)
3E (t)

4E (t)

5E (t)
nE (t)

AE (t)

 
Fig. 1. Energy at one node based on superposition principle. 

The import of these concepts into circuit theory is relatively 
new with much recent progress regarding filter theory, 
analysis and implementation. 

2.2. Complex function 

In this section, we describe a transfer function as the form 
of a complex function where the variable is an angular 
frequency. In frequency domain, the transfer function and 
the self-loop function of a filter are complex functions. 
Complex functions are typically represented in two forms: 
polar or rectangular.The polar form and the rectangular 
representation of a complex function H(jω) is written as 
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where Re{H(jω)} is the real part of H(jω) and Im{H(jω)} is 
the imaginary part of H(jω), and j is the imaginary operator 

j2 = -1. The real quantity        2 2
Re ImH j H j   

is known as the amplitude or magnitude, the real quantity 
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is called the angle  H j , which is the 

angle between the real axis and  H j . The angle may be 

expressed in either radians or degrees and real quantity 
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  is called the argument   Arg H j  which is the 

ratio between the real part and the imaginary part of H(jω). 
The operations of addition, subtraction, multiplication, and 
division are applied to complex functions in the same 
manner as that they are to complex numbers.  

Complex functions are typically expressed in three forms: 
magnitude-angular plots (Bode plots), polar charts (Nyquist 
charts), and magnitude-argument diagrams (Nichols 
diagrams). In the paper, the stability test is performed on 
the magnitude-angular charts. 

2.3. Graph signal model for complex function 
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In this section, we describe the graph signal model of a 
typical complex function which is the same as the graph 
signal model of a feedback system. A negative-feedback 
amplifier is an electronic amplifier that subtracts a fraction 
of its output from its input, so that negative feedback 
opposes the original signal. The applied negative feedback 
can improve its performance (gain stability, linearity, 
frequency response, step response) and reduce sensitivity to 
parameter variations due to manufacturing or environment. 
Thanks to these advantages, many amplifiers and control 
systems use negative feedback. However, the denominator 
complex functions are also expressed in the graph signal 
model which is the same as the negative feedback system.  
A general denominator complex function is rewritten as 

( ) ( )( )
( ) 1 ( )

out

in

V s A sH s
V s L s

 


 (3) 

This form is called the standard form of the denominator 
complex function. The output signal is calculated as 

   
( )( ) ( ) ( )out in out
L sV s A s V s V s
A s

 
  

  
 (4) 

Fig. 2 presents the graph signal model of a general 
denominator complex function. The feedback system is 
unstable if the closed-loop “gain” goes to infinity, and the 
circuit can amplify its own oscillation. The condition for 
oscillation is 

 2 1( ) 1 1 ;j kL s e k Z       (5) 

Through the self-loop function, a second-order denominator 
complex function can be found that is stable or not. The 
concepts of phase margin and gain margin are used to asset 
the characteristics of the loop function at unity gain. The 
conventional test of the loop gain, which is called 
“Barkhausen’s criteria”, is unity gain and -180o of phase in 
magnitude-phase plots (Bode plots)(8). 

 

Fig.2. Graph signal model of general complex function.  

2.4. Alternating current conservation measurement 

In this section, we describe a mathematical way to measure 
the self-loop function based on the alternating current 
conservation when we inject an alternating signal sources 
(alternating current or voltage sources) and connect the 
input of the network into the alternating current ground (AC 
ground). In general, the term of “alternating current 
conservation” is proposed to define this technique. The 
main idea of this method is that the alternating current is 
conserved. In other words, at the output node the incident 
alternating current is equal to the transmitted alternating 
current. If we inject a alternating current source (or 
alternating voltage source) at the output node, the self-loop 
function can be derived by ratio of the incident voltage (Vinc 
) and the transmitted voltage (Vtrans) as shown in Fig. 3. 
Compared to measurement results of the alternating current 
conservation with the conventional ones (voltage injection), 
they are the same.  
In order to break the feedback loop without disturbing the 
signal termination conditions, and ensure that the loop is 
opened for AC signals, a balun transformer inductor can be 
used to isolate the signal source from the original network 
as shown in Fig. 4. In this case, the values of resistors and 
inductors are very large. Compared to the proposed 
measurement with the conventional replica measurement, 
they are the same measurement results. Apply the widened 
superposition principle at Vinc and Vtrans nodes, and the 
self-loop function is derived as 

( ) ( )
( ) ( )
inc inc

trans
trans

V VL s V L s
A s A s V

    (6) 

 

Fig. 3. Derivation of self-loop function based on alternating 
current conservation. 
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Fig. 4. Derivation of self-loop function based on balun 
transformer inductor injection method. 

3. Analysis of first- and second-order 
denominator complex functions 

3.1. First-order denominator complex function 

In this section, we shall present the frequency response of a 
typical first-order denominator complex function on the 
magnitude-angular charts. A general transfer function of the 
first-order denominator complex function is defined as in 
Eq. (7). Assume that the constant variable a is not equal to 
zero. If the constant is smaller than zero, it is expressed as a 

complex number ( 20 ja a a j a e     ).  In this 

paper, the angular of the constant is not written in details.  

1( )H s
as b




 (7) 

If the constant b is equal to zero, the complex function is 
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This complex function is stable, because the angular is a 
constant (90 degrees). When the constant b is not equal to 
zero, the simplified form of Eq. (7) is 
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Here, the cut-off angular frequency is cut
b
a

  . The 

magnitude of the complex function decreases very fast from 
the cut-off angular frequency. Therefore, the high-order 
harmonics of a step input are significantly reduced when it 
goes into the network.  

3.2. Self-loop function of first-order denominator 
complex function 

In this section, we investigate the characteristics of the 
self-loop function L(s) of the first-order denominator 
complex function on the magnitude-angular charts. From 
Eq. (8), the self-loop function is 

2( )
ja aL j j e

b b



      (10) 

Through the self-loop function, it is easy to find that the 
first-order denominator complex function is stable, because 
the phase does not change when the angular frequency goes 
from 0 to infinity. 

3.3. Second-order denominator complex functions 

In this section, we shall analyze the frequency 
response of a typical second-order denominator 
complex function on the magnitude-angular charts. A 
general second-order denominator complex function 
is defined as in Eq. (11). Assume that all constant 
variables are not equal to zero.  
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From Eq. (26) in Appendix A.1, the simplified complex 
function is 
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In order to plot the magnitude-angular charts, the values of 
magnitude-angular of the complex function, which are 
calculated in Appendix A.1, are summarized on Table 1.  
In overdamped case, the magnitude of the complex function 
is so high from the first cut-off angular frequency 

2

1
21

2 2cut
b a c b
a b a a

           

to the second cut-off angular 

frequency 2

2
21

2 2cut
b a c b
a b a a

           

. Therefore, this 

gain will amplify the high order harmonics from ωcut1 to 
ωcut2 of an input signal which includes many harmonics. 

3.4. Damped oscillation noise 

In this section, we describe the response of a typical 
second-order denominator complex function to a step input 
or a square wave. Based on the Fourier series expansion of 
the square wave, the waveforms of the pulse wave are 
expressed in many functions of time with many different 
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frequencies as shown in Fig. 5. The waveform function of a 
square wave is  

   1

1

sin 2 2 14( )
2 1k

k f t
S t

k











  (13) 

 In under-damped case, the high-order harmonics of the 
step signal are significantly reduced from the first 
cut-off angular frequency. Therefore, the rising time and 
falling timeare rather short. In this case, the system is 
absolutely stable.  

 In case of critically damped, the rising time and falling 
time are longer than the underdamped case. Now, the 
system is marginally stable. The energy propagation is 
also maximal because this condition is equal to the 
balanced charge-discharge time condition(9). 

 In over-damped case of the complex function, the gain 
at the cut-off angular frequency will amplify the 
high-order harmonics of the step signal that causes the 
peaking or ringing. Ringing is an unwanted oscillation 
of a voltage or current. The term of “damped oscillation 
noise” is proposed to define this unwanted oscillation 
which fades away with time, particularly in the step 
response (the response to a sudden change in input). 
Damped oscillation noise is undesirable because it 
causes extra current to flow, which leads to thereby 
wasting energy and causing extra heating of the 
components. It can cause unwanted electromagnetic 
radiation to be emitted. Therefore, the system is 
unstable. 
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Fig. 5. Square wave: (a) waveform, spectrum, and (b) 
partial sums of Fourier series. 

3.5. Self-loop function of second-order denominator 
complex function 

In this section, we investigate the characteristics of the 
self-loop function L(s) on the magnitude-angular charts. 
The general transfer function and self-loop function are 
rewritten as in Eq. (14). The values of magnitude and 
angular of the self-loop function, which are calculated in 
Appendix A.2, are summarized in Table 2. In this work, the 
self-loop function is only sketched on the 
magnitude-angular charts.

Table 1. Summary of magnitude-angular values of transfer function
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4. Analysis of two-stage operational amplifier 

4.1 Transfer function for two-stage op amp 

In this section, we investigate the effects of Miller capacitor 
on a two-stage operational amplifier (op amp). The op amp 
plays an important role in an active filter(10). In order to 
define the performance parameters of the second-order 
multiple feedbacklow-passfilter, we first take a brief look at 
the two-stage op amp. Fig. 6(a) shows simplified models of 
the two-stage op amp. As we know, frequency 
compensations based on Miller theory are applied in all 
most of two-stage op amp circuits. Let us investigate the 
transfer function of a two-stage op amp with frequency 
compensation. The gain of this topology is limited to the 
product of the input pair trans-conductance and the output 
impedance. In order to do the stability test, the transfer 
function at the second-stage of the two-stage op amp is 
considered. Furthermore, the two-stage op amp may prove 
inevitable if the output voltage swing must be maximized. 

Thus, the stability and compensation of this op amp are of 
interest. Figs. 6(b) and 6(c) present the circuit and small 
signal model of a two-stage op amp with Miller capacitor. 
The transfer function and the self-loop function of this 
network, which are calculated in Appendix A.3., are 
simplified as 
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The values of given variables are 
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Table 2. Summary of magnitude-angular values of self-loop function
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Fig. 6. Models of two-stage op amp with frequency 

compensation (a), second-stage of op amp (b), and small 
signal model (c). 

When the frequency compensation is considered, the 
transfer function of the second-stage of the op amp is a 
fourth-order denominator complex function. It is very 
difficult to investigate the stable regions of this complex 
function. So, the measurement of the self-loop function is 
very important to do the stability test for the op amp. 

4.2. Stability test for two-stage op amp 

In this section, we do a stability test for the designed 
two-stage op amp.  

Table 3. Device dimension. 

Transistor 

Size 

(W/L)1 (W/L)2 (W/L)3 (W/L)4 

18/0.3 18/0.3 1.6/0.8 1.6/0.8 

(W/L)5 (W/L)6 (W/L)7 (W/L)8 

10/0.5 1.7/0.3 4/0.3 1/0.3 

Capacitor 

Value 

C1 C2 

0.5uF 0.5uF 

Resistance 

Value 

R1 R2 

3 KΩ 10 Ω 

(a) (b)

(c) (d)  
Fig. 7. Models of op amp; (a) stable, (b) unstable; 

derivation of self-loop function: (c) stable, (d) unstable. 

The op amp circuit was simulated using SPICE Spectre 
simulator in TSMC 0.18um CMOS process. This op amp 
consumes 0.25mW power from a 1.8V voltage supply. All 
of the circuit parameters are summarized in Table 3. 
Figures 7(a) and 7(b) present the models of the two-stage 
op amp which can be stable and unstable. The self-loop 
functions in these models are measured in Figures 7(c) and 
7(d). In these models, the ideal capacitors and resistors are 
used. SPICE simulation results of the two-stage op amp are 
shown in Fig. 8. Based on the voltage injection technique, 
the self-loop functions of two-stage op amps are measured.  
In case of a stable op amp, the phase margin is 100 degrees 
at unity gain of the self-loop function.  

(a)

(b)  
Fig. 8. Step response of op amps: (brown) stable, (purple) 

unstable; frequency response of self-loop functions. 
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In case of an unstable op amp, the phase margin is 180 
degrees at near the unity gain of the self-loop function. 
Therefore, the damped oscillation noise makes overshoot 
and undershoot. 

5. Second-order multiple feedback LPF 

5.1 Deboo integrator 

In this section, a typical Deboo integrator is analyzed. Fig. 
9 presents a model of the Deboo integrator (11). This filter 
has been widely used because it is simple, versatile, and 
requires few components(12). Many parameters should be 
considered when designing an integrator. In this topology, a 
single op-amp, a capacitor, and four resistors are used. The 
ideal operational amplifiers are used and the effect of the 
Miller capacitor is neglected. The transfer function of the 
Deboo integrator circuit, which is calculated in Appendix 
A.4., is derived as in Eq. (16). The simplified transfer 
function of this network is

  2 3 4

1 2 3 2 3 1 4

( )
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H j
j R R R C R R R R


 

  
 (17) 

Due to the analysis of first-order denominator complex 
function in Section 3, the Deboo integrator is a stable 
network. When R2R3 is equal to R1R4, the network is called 
an integrator. We have 
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When R2R3 is not equal to R1R4, the network is a low-pass 
filter. The transfer function and the self-loop function are 
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1
CZ sC


 

Fig. 9. Model of Deboo integrator. 

5.2. Stability test for Deboo integrator 

In this section, the proposed design and the stability test for 
a Deboo integrator and presented. The Deboo integrator 
circuit and measurement of self-loop function are shown in 
Fig. 10. The SPICE simulations are carried out using the 
ideal operational amplifier with the gain bandwidth (GBW) 
= 10MHz and DC value of open loop gain (A(s)) = 100000. 
The proposed model for the Deboo integrator in Fig. 10(a) 
is designed for unity gain at frequency f0 = 50kHz taking 
C1 =6 nF, and R1= R2 = R3= R4= 1kΩ. At unity gain 
(4.5MHz) of the self-loop function, the angular is 90 
degrees. Compared to the simulation result with the 
mathematical analysis, they are the same. Therefore, the 
Deboo integrator is a stable network. 

 

Fig. 10. Models of Deboo integrator circuit (a) and 
measurement of self-loop function (b). 

Fig. 11. Frequency response of transfer function and 
self-loop function. 
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5.3. Analysis of second-order multiple feedback LPF 

This section presents a second-order multiple feedback 
low-pass filter using the Deboo integrator. The models of 
the proposed design of the filter and the measurement of 
self-loop function are shown in Fig. 12. The transfer 
function and the self-loop function of this filter, which are 
calculated in Appendix A.5., are derived as 

20
0 12

0 1

( ) ; ( )
1

a
H s L s s b sb

s b sb
  

 
 (20) 

Here, the values of given variables are 
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The stability regions of the filter are defined as 
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Fig. 12. Models of proposed design (a) and derivation of 

self-loop function (b) for multiple feedbackLPF. 

5.4. Stability test for multiple feedback LPF 

This section shows a design circuit and a stability test for a 
second-order multiple feedback low-pass filter using the 
Deboo integrator. The SPICE simulations are carried out 
using the ideal op amp with the gain bandwidth (GBW) = 
10MHz and DC value of open loop gain (A(s)) = 100000. 
The proposed model of the filter in Figure 13 (a) is 
designed for cut-off frequency f0 = 25kHz taking C1 =3 nF, 
C2 = 6 nF, R1= R3 = R4= R5= R6 = 1kΩ, R2 = 1.2 kΩ, 
and R7 = 5 kΩ.  Figure 13(b) represents the same circuit 
designed with R2 = 3 kΩ. The self-loop functions of two 
models are shown in Figure 13(c), (d).  

 
Fig. 13. Proposed models: (a) stable, and (b) unstable; 

derivation of self-loop function: (c) stable, (d) unstable. 
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Fig. 14. Simulation results of proposeddesign: (a) frequency 

response, (b) transient response; (brown) stable, (purple) 
unstable; frequency response of self-loop function: (c) 

stable, and (d) unstable. 

Figure 14(a) represents the SPICE simulation results of the 
magnitude and phase of the proposed models on the 
frequency domain. In time domain, when the pulse signals 
go in to these models, the transient responses are shown in 
Fig. 14(b). The damped oscillation noise (purple) occurs in 
case of the unstable network. The overshoot of the unstable 
feedback system can cause extra current to flow, thereby 
wasting energy and cause extra heating of the components. 
The measurements of the self-loop functions of the 
proposed models are shown in Figs. 14(c), and 14(d). In 
theoretical calculation at the half cut-off frequency 12.5 
kHz (a half of f0 = 0.5 * 25 kHz = 12.5 kHz) is 63.4 
degrees. Our measurement results of self-loop functions 
show that  

 In stable case, phase margin is 75 degrees at 12.5 kHz. 
(> 63.4 degrees at 12.5 kHz ) 

 In unstable case, phase margin is 55 degrees at 12.5 
kHz. (< 63.4 degrees at 12.5 kHz ) 

The simulation results and the values of theoretical 
calculation are unique. 

6. Discussion 

Active filters employ op amps, resistors, and capacitors to 
create the desired frequency response. Second-order active 
sections can be based on integrators. The performance of a 
second-order low-pass filter, whether it has single-or 
multiple-loop control, is determined by its loop self-loop 
function and step input responses. These measurements 
show how good a second-order low-pass filter is. The 
self-loop function of a low-pass filter is only important if it 
gives some useful information about relative stability or if it 
helps optimize the transfer function performance. The 
self-loop function can be directly calculated based on the 
widened superposition principle. The alternating current 
conservation technique (voltage injection) can measure the 
self-loop function of low-pass filters. Compared to the 
research results with mathematical analysis, the properties 
of self-loop functions are the same. SPICE simulation 
results are included. Moreover, Nyquist theorem shows that 
the polar plot of self-loop function L(s) must not encircle 
the point (−1, 0) clockwise as s traverses a contour around 
the critical region clockwise in polar chart(13,14). However, 
Nyquist theorem is only used in theoretical analysis for 
feedback systems.  

7. Conclusions 

This paper describes the approach to do the stability 
test for a second-order multiple feedback low-pass filter 
constructed according to the Deboo’s connection. The 
circuitry consisting of one active low-pass filter and one 
integrator in a feedback loop operating as a filter realizing a 
general biquadratic function. The transfer function of this 
filter is a second-order denominator complex function. 
Moreover, the term of “self-loop function” is proposed to 
define L(s) in a general transfer function. In order to show 
an example of how to define the operating region of a 
multiple feedback filter, a second-order denominator 
complex function is analyzed. In overdamped case, the 
filter will amplify the high order harmonics from the first 
cut-off angular frequency ωcut1 to the second cut-off angular 
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frequency ωcut2 of a step input. This causes the unwanted 
noise which is called ringing or overshoot. The term of 
“damped oscillation noise” is proposed to define the ringing.  
In this work, the values of the passive components used in 
the second-order multiple feedback low-passfilter circuit 
were chosen directly due to the stable conditions. All of the 
transfer functions were derived based on the widened 
superposition principle and self-loop functions were 
measured according to the alternating current conservation 
technique. The obtained results were acquired to 
simulations using SPICE models of the devices, including 
the model of a two-stage operational amplifier. In this paper 
not only the results of the mathematical model but also the 
results of simulation of the designed circuits are provided, 
including the stability test. The simulation results and the 
values of theoretical calculation of the self-loop function 
are unique. Furthermore, managing power consumption of 
circuits and systems is one of the most important challenges 
for the semiconductor industry(15). Therefore, the damped 
oscillation noise test can be used to evaluate the stability of 
a feedback system. 
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Appendix 

A.1. Second-order denominator complex function 

From Eq. (11), the transfer function is rewritten as 

2 2 2
2

1
1( )

2
2 2 2

aH s
as bs c b b c bs s

a a a a

 
                        

 
(25) 
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The simplified form of Eq. (25) is 
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The magnitude-angular form of transfer function is 
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In critically damped case
2

2
c b
a a

   
 

, the magnitude-angular 

form of transfer function is 
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At the cut-off angular frequency
2cut
b
a

  , the 

magnitude-angular form of transfer function is 
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aH j H j
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         (29) 

A.2. Self-loop function of second-order denominator 
complex function 

From Eq. (14), the self-loop function is rewritten as 

2 2 24 2 2( )
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The magnitude-angular form of self-loop function is 
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(31) 

In critically damped case
2

2
c b
a a

   
 

, the self-loop function 

is 

2arctan
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 (32) 

At the angular frequency b
a

  , the magnitude-angular 

form of self-loop function is 

( ) 4 2; ( ) arctan( 1) 45oL j L         (33) 

At the angular frequency
2cut
b
a

  , the magnitude-angular 

form of self-loop function is 

 ( ) 5; ( ) arctan 2 63.4oL j L j         (34) 

At unity gain of the self-loop function, we have  

24( ) 1 1 1u u u
a aL
b b

        
 

 (35) 

Solving Eq. (33), the angular frequency u  at unity gain 

is calculated as 

5 2
2u
b
a

    (36) 

The relationship between the angular frequency u and the 

cut-off angular frequency 
2cut
b
a

  is  

5 2
5 2
u
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 (37) 

At unity gain angular frequency 5 2
2u
b
a

   , the 

magnitude-angular form of self-loop function is 

2( ) 1; ( ) arctan 76.35
5 2

oL j L j
        
  

 (38) 

In underdamped case
2

2
c b
a a

   
 

, the self-loop function is 
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 (39) 

The magnitude-angular form of self-loop function is 
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(40) 

At the angular frequency b
a

  , the magnitude-angular 

form of self-loop function is 
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(41) 

At the angular frequency
2cut
b
a

  , the magnitude-angular 

form of self-loop function is 
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(42) 

At unity gain angular frequency 5 2
2u
b
a

   , the 

magnitude-angular form of self-loop function is 
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In overdamped case 
2
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, the self-loop function is 
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The magnitude-angular form of self-loop function is 
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(45) 

At the angular frequency b
a

  , the magnitude-angular 

form of self-loop function is 
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(46) 

At the angular frequency
2cut
b
a

  , the magnitude-angular 

form of self-loop function is 
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(47) 

At unity gain angular frequency 5 2
2u
b
a

   , the 

magnitude-angular form of self-loop function is 
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A.3. Small signal model of second stage of op amp 

Apply the widened superposition at VA node, we get 
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Fig. 14. Circuit of Figure 6(c). 

Then, apply the widened superposition at Vout node, we get 

1 1 1 1 1 1
out A m

CGD C CC CDB D CGD C CC

V V g
Z R Z Z R Z R Z

   
            

 
(50) 

The transfer function of this network is 
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Now, the simplified transfer function of this network is 
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A.4. Deboo integrator 

Apply the widened superposition at VA node, we get
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Do the same work at VB node, we get
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Fig. 15. Circuit of Figure 9. 

Here, VA = VB , the simplified transfer function of this 
network is
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A.5. Second-order multiple feedback LPF 

Apply the widened superposition at node VA, we get
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Do the same work at node VC, we get
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Then at node VD, we get
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The simplified transfer function of this filter is derived as
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Fig. 16. Circuit of Figure 12(a). 
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