Accurate and Fast Testing Technique of Operational Amplifier DC Offset Voltage in µV-order by DC-AC Conversion

The 3rd International Test Conference in Asia, 2019

Gunma University

<u>Yuto Sasaki</u>, Kosuke Machida, Riho Aoki, Shogo Katayama Takayuki Nakatani, Jianlong Wang, Anna Kuwana Kazumi Hatayama, Haruo Kobayashi

ROHM Co., Ltd.

Keno Sato, Takashi Ishida, Toshiyuki Okamoto Tamotsu Ichikawa

Purpose

To achieve high accuracy and fast testing of very small DC voltage with Automatic Test Equipment (ATE)

- Requirements
 - µV-order Testing
 - Fast Testing

Proposed Method

FFT-Based DC-AC Conversion

Outline

- Background and Motivation
 - Conventional Test Method
 - Difficulty for µV-order Testing
- Proposed Method
 - FFT-Based DC-AC Conversion
 - Challenge for Multi-Site Testing
- Conclusion

Outline

- Background and Motivation
 - Conventional Test Method
 - Difficulty for µV-order Testing
- Proposed Method
 - FFT-Based DC-AC Conversion
 - Challenge for Multi-Site Testing
- Conclusion

Background

IoT Sensor Network

Sensor

µV-order offset OP-Amp is a key component of IoT system

Conventional Test Method (1)

Null Method for OP-Amp Test Circuit

[1] James M. Bryant, "Simple Op Amp Measurement", Analog Dialogue, vol.45, pp 21-23 (2011)

Conventional Test Method (2)

Usage of High Accuracy Digital Multimeter

KEYSIGHT 3458A 8 ¹/₂ Digit

Outline

- Background and Motivation
 - Conventional Test Method
 - Difficulty for µV-order Testing
- Proposed Method
 - FFT-Based DC-AC Conversion
 - Challenge for Multi-Site Testing
- Conclusion

System noises affect µV-order Testing

Difficulty for µV-order Testing (Cont'd)

Problem 2. Test Time (Multi-Site)

Single

Multi

Unrealistic Situation

Difficulty for µV-order Testing (Cont'd)

A Problem

3. Electromotive Force (EMF)

: Voltage
: Tempe
: Contac
: Differe

- : Temperature : Contact of different metals
 - : Difference btw V1 and V2

EMF of Metal Film Resistance: $30 \mu V/^{\circ}C$ Vemf = V1 – V2 = $30 \mu V * (T1 - T2)$;T1>T2

Keep temperature difference small enough

Motivation

To Solve Problems

- 1. Noise at Test Environment
 Testing NOT affected by system noises
- 2. Test Time
 Testing method
 Applicable to multi-site testing
- 3. Electromotive Force (EMF) Temperature difference → Less than 0.1 °C for µV-order testing

To Propose µV-order Test Method for ATE

Outline

- Background and Motivation
 - Conventional Test Method
 - Difficulty for µV-order Testing
- Proposed Method
 - FFT-Based DC-AC Conversion
 - Challenge for Multi-Site Testing
- Conclusion

Proposed Method

FFT-Based DC-AC Conversion

Frequency [Hz]

DC Voltage is converted to Fundamental Power Spectrum

FFT-Based DC-AC Conversion (Simulation)

$Vin = 1 \mu V$ $Vin = 1 \mu V$

DC-AC Conversion Circuit

DC-AC Conversion Clock: 1 kHz (duty 50 %) CMOS Switch: Nch FET (2N4393)

FFT Result

LTspice FFT Condition: Fs = 409.6 kHz, Fres = 100 Hz, N = 4096, Rectangle Window

Measurement as low as 1 nV is possible, based on simulation
 Thanks to FFT, system noises can be ignored

FFT-Based DC-AC Conversion (Initial Experiment)

Experiment Environment

Switch: CMOS Analog SW IC (4053)

Environment •LabVIEW •NI USB-6001/6002/6003 (16 bit ADC)

DC-AC Conversion

Analysis using LabVIEW

Switching Noise Problem

Initial Circuit Single-End Amplifier Monitor **100x** Vin = $1 \mu V$ AC 16bit Amplifier FFT ADC ~ 100x Δ **Sampling Rate** \mathbf{W} 100 kHz **Switching** Noise Clock = 1 kHz

Monitor

Tek●Stop		🔵 Stop	M Pos: 0.0	000s	MEASURE
		¥	2.24Vp-p		CH1 P-P値 2.24V CH1
					なし
1+					
					なし
CH	1V/div			Ext / 1	なし .60V
_	·· ···· ·· ··	29-	AUG-18 10:15	1.00001	(Hz

Switching Noise

Single-End Amplifier

Consideration of Differential Amplifier Usage

Switching Noise Countermeasure Effect of Switching Noise w/ Countermeasure Improved Circuit Monitor

Switching Noise

Differential Amplifier (Add Dummy Switch)

Switching noise is reduced to 1/5

Switching Clock Leak Problem

Affect of Switching Clock Leak

Initial Circuit

Monitor

Switching Noise

Parasitic capacitance btw Pin and Pin affect switching clock leak

Switching Clock Leak Countermeasure

Affect of Switching Clock Leak w/ Countermeasure

Improved Circuit

Use of S3 instead of S1

Monitor

Switching Noise

Switching noise is reduced to 1/10

Measurement with Both Countermeasures

Sampling Rate: 100 kHz, Sample: 10 k, Averaging: 100, Frequency Resolution: 10 Hz

it's possible to measure as low as 2 μV

EMF countermeasure is essential for further performance

Electromotive Force (EMF) Countermeasure

EMF Countermeasure

Upside down Switch IC (4053) contact Heatsink via Copper Tape (GND)

Switch IC (4053) is covered by Styrofoam

Styrofoam Box

EMF Countermeasure Effectiveness

EMF Countermeasure

EMF affects output

Improved Condition (Constant Temperature) Initial Condition (Exposed in atmosphere) Vin = OPENMonitor **CMOS SW** Peripheral Vin = OPEN Circuit 4053 GND **Circuit Board** Stop SAVE/REC Tek M Pos: 0.000s アクション 画像保存 Offset affected EMF is 形式 equivalent to Vin = 1 µV JPEG 画像保存 について フォルダ 選択 保存 10mV/div TEK0001.JPG CH1 10.0mVBu M 250.us 7.60V Ext 🗸 28-AUG-18 14:58 1.00001kHz

Styrofoam Box **Heatsink** Monitor **CMOS SW** Peripheral 4053 Circuit **Copper Tape** Heatsink (GND) M Pos: 0.000s Tek Stop SAVE/REC アクション 画像保存 It's possible to measure 形式 as low as Vin = $1 \mu V$ JPEG 画像保存 について フォルダ 選択 保存 10mV/div TEKOOOO.JPG CH1 10.0mVBw M 250.us Ext / 1.60V 28-AUG-18 14:55 1.00001kHz

Significant Improvement

23/33

Power Spectrum with All Countermeasures

Improved Result

Sampling Rate: 100 kHz, Sample: 10 k, Averaging: 100, Frequency Resolution: 10 Hz

it's possible to measure 1 μV

Measurement with All Countermeasures

Low voltage measurement w/o EMF Countermeasure

Low voltage measurement w/ EMF Countermeasure

Linearity is improved

Variation and Repeatability of Measurement

Dependent on the number of averages

Outline

- Background and Motivation
 - Conventional Test Method
 - Difficulty for µV-order Testing
- Proposed Method
 - FFT-Based DC-AC Conversion
 - Challenge for Multi-Site Testing
- Conclusion

FFT-Based DC-AC Conversion for Multi-Site Testing

Configuration & Operation

Multi-site testing is possible

Experiment Environment for Multi-Site Testing Four-Site case

Upside down Switch IC (4053) contact Heatsink via Copper Tape (GND)

DC-AC Conversion Part

Verification with Spectrum Measurement

Four-Site Testing Measured Spectrum

Sampling Rate: 100 kHz , Sample: 10k, Averaging: 100, Frequency Resolution: 10 Hz **Ch1 = 1.0 kHz, Ch2 = 1.2 kHz, Ch3 = 1.4 kHz, Ch4 = 1.6 kHz**

Multi-site testing is applicable

Verification with Linearity Measurement

Four-Site Testing

Sampling Frequency Interval: 0.1 kHz

Sampling Frequency Interval: 0.01 kHz

Four-site measurement as low as 0.2 µV is possible

Outline

- Background and Motivation
 - Conventional Test Method
 - Difficulty for µV-order Testing
- Proposed Method
 - An FFT-Based DC-AC Conversion
 - Challenge for Multi-Site Testing
- Conclusion

Conclusion

Solved Problems

1. Noise at Test Environment Testing is NOT affected by system noises

2. Test Time

Testing method is applicable to multi-site testing

3. Electromotive force (EMF)

Keep temperature difference less than 0.1 °C for µV-order testing

Proposed FFT-based DC-AC conversion is applicable for μV-order test using ATE

Q&A

Is the EMF Seebeck effect? Yes.

- How about a throughput of the test? It seems to need a time for steady temperature of changed DUT against EMF.
 - No problem because temperature of test environment is under control. In addition, temperature difference is no effect except between regsistors in a DC-AC conversion circuit.