2B-01

IGBT Gate Driver Circuit with Power Loss Reduction by Current Source Control

Yudai Abe, Takashi Ida, Jun-ichi Matsuda, Yukiko Shibasaki, Anna Kuwana, Haruo Kobayashi (Gunma Univ.) and Akio Iwabuchi (Sanken Electric Co. Ltd.)

Division of Electronics and Informatics, Gunma University, Kiryu 373-8515 Japan email: t191d003@gunma-u.ac.jp

Introduction

Problems of IGBT Tail current at turn-off Wiring inductance on collector terminal side Parasitic capacitor between each terminal

- Switching Loss
- **Excessive Overshoot**
- Ringing

Research Goal and Approaches

- Research Goal
- Improve power loss and excessive overshoot during switching
- Approaches
 - 1. Drive IGBT with current source
 - Reduction of switching loss
- 2. Adjust the amount of current during switching
 - Reduction of overshoot

IGBT Evaluation Circuit

Proposed

Multiple Peak Current Mirror Circuit

Proposed Circuit

Constant Current Method

Switching Loss: 1.87 [µJ]

- Switching Loss: 0.325 [µJ]

Conclusion

Current Adjustment Method

- Overshoot of V_{out}: 29.2 [V]
- Switching Loss: 0.316 [µJ]

Comparison of 3 Methods

	Overshoot of V_{out} [V]	Switching Loss [µs]
Voltage Drive Method	44.1	1.87
Constant Current Method	41.1	0.352
Current Adjustment Method	29.2	0.316

Switching loss is greatly reduced by current drive Reduces overshoot by current adjustment method

Summary and Challenge

Summary

- Gate power loss reduction by driving IGBT with current source
- The overshoot at turn-off reduction by adjusting the amount of extraction current

Challenge

Examination of switching loss on the collector terminal side