貴金属比を用いた 等価時間サンプリングでの高効率波形取得条件の検討 佐々木 優斗 山本 修平* 桑名 杏奈 小林 春夫 (群馬大学)

Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System by Metallic Ratio Yuto Sasaki, Shuhei Yamamoto^{*}, Anna Kuwana, Haruo Kobayashi, (Gunma University)

キーワード:等価時間サンプリング,オシロスコープ,波形抜け,黄金比,白銀比,貴金属比

(equivalent-time sampling, sampling oscilloscope, waveform missing, golden ratio, silver ratio, metallic ratio)

1. はじめに

サンプリング・オシロスコープは、被測定信号が繰り返し 信号である場合、等価時間サンプリング技術を用いて広帯 域の信号を比較的低い周波数でサンプリングする(文献⁽¹⁻⁴⁾)。この技術を用いると、ナイキスト・レートよりも低いサ ンプリング周波数を用いても高周波波形を再現することが できる。しかし、被測定信号の周波数(fsig)とサンプリン グ・クロック(fCLK)の周波数がある関係にあるとき、波形 抜けが起こってしまうという問題がある。このとき、波形を 再現するために非常に多くのデータが必要となり、測定に 長時間かかってしまうため非効率である。

筆者らは、被測定信号とサンプリング・クロックの周波数 比が黄金比(1:1.618…)であるとき、効率的に波形 を取得できることを発見した(文献⁽⁵⁾)。本論文では、白銀 比等の同じ貴金属比の場合にも効率的波形取得が可能であ るか検討する。

2. 等価時間サンプリング

波形をサンプリングし測定するための技術には、実時間 サンプリングと等価時間サンプリングがある。実時間サン プリングは単発信号を測定することができるが、サンプリ ング・クロックの周期以上の時間分解能を得ることができ ない。一方、等価時間サンプリングは繰り返し信号しか測定 することができないが、サンプリング・クロックの周期以上 の時間分解能を得ることができる。等価時間サンプリング 技術にはシーケンシャルサンプリング等いくつか種類が存 在するが、本研究ではランダム・サンプリングをターゲット とする。

〈2·1〉 ランダム・サンプリング

図 1 にランダム・サンプリングの原理を示す。ランダム・ サンプリングは、被測定信号と非同期なサンプリング・クロ ックを用いて波形を取得する。被測定信号は繰り返し信号 であり、サンプリング・クロックによりサンプリングされた 時間(位相)は保持される。多数のデータを集め波形を再現 することができる。

図 1 ランダム・サンプリングの原理 Fig. 1 Principle of random sampling.

〈2·2〉 波形抜け

ランダム・サンプリングでは、一般にサンプリング点が被 測定信号の一周期に渡ってランダムに出現する(図2参 照)。しかし、(1)サンプリング・クロックの周波数が被測 定信号に比べて大きすぎる場合(図3参照)、(2)サンプ リング・クロックの周波数が被測定信号の高調波や低調波 の整数倍に近い場合(図4参照)、(3)サンプリング・ク ロックの周波数が被測定信号と近い場合(図5参照)では 波形抜けが生じ、波形を再現するために非常に多くのデー タが必要となり、波形全体を再現するのに時間がかかって しまう。

 $f_{CLK} \gg f_{sig}$(1)

図 2 一般的なランダム・サンプリングの推移 Fig. 2 Development of reconstructed waveform for random sampling.

図 4 波形抜け $(f_{CLKz}(1/6)f_{sig})$ Fig. 4 Waveform missing in case of $f_{CLKz}(1/6)f_{sig}$.

図 5 波形抜け ($f_{CLK \approx f_{sig}}$) Fig. 5 Waveform missing in case of $f_{CLK \approx f_{sig}}$.

〈2・3〉 効率について

一般に、高効率とは高速で高分解能を意味する。しかし、 本研究ではサンプリング中に波形抜けが起こらないことを 高効率と定義する(図 6参照)。したがって、波形抜け条件 (1)は高速で高分解能だが、高効率とはみなさない。波形 抜けは隣接するサンプリング点間の最大の距離と最小の距 離の比が大きいことと定義することができる。一方、最大の 距離と最小の距離の比が最小(1:1)となるのは、サンプ リング点が周期を等分している場合である。しかし、これは ランダム・サンプリングでは起こりえない。つまり、隣接す るサンプリング点間の最大の距離と最小の距離の比を小さ く保ったままサンプリングできることを高効率とする。

3. 黄金比サンプリング

黄金比(1: φとおく)とは、

 $1:\frac{1+\sqrt{5}}{2}$(4)

の比である。被測定信号とサンプリング・クロックの周波数 比を黄金比にすることを黄金比サンプリングと呼ぶ(式5 参照)。

 $f_{CLK} = \varphi \times f_{sig} \tag{5}$

図7に黄金比サンプリングで位相0からサンプリングさ れた正弦波を示す。番号はサンプリングされた順番である。 表1に図7のサンプリング点の位相と前後のサンプリング 点との距離、隣接するサンプリング点間の最大、最小の距離 を示す。位相は0~1に正規化してある。前のサンプリング 点と次のサンプリング点の距離は常に1/φまたは1/φ²で あり、近付きすぎることがない。また、隣接するサンプリン グ点間の最大の距離と最小の距離の比が1:φまたは1:φ ²を保ったままサンプリングされている。加えて、隣接する サンプリング点間の距離の比にこれ以外の比は存在しな い。

図 8 に黄金比サンプリングしたときのサンプリング点数 (N)毎の隣接するサンプリング点間の最大・最小距離を示 す。赤い点が最大の距離、青い点が最小の距離を表す。最大、 最小の距離はフィボナッチ数

 $F_0 = 0, F_1 = 1, F_{m+2} = F_m + F_{m+1}$(6)

(1、1,2,3,5…)毎に1/φとなっている。フィボナ ッチ数列の隣り合う項の比の極限は黄金比に収束し(式7 参照)、

また、フィボナッチ数の総和は

 $\sum_{k=1}^{n} F_k = F_{n+2} - 1....(8)$

となるため、およそサンプリング点数をφ倍にすると隣接 するサンプリング点間の最大と最小の距離が1/φとなる (式9参照)。

 $\frac{\sum_{k=1}^{m+1} F_k}{\sum_{k=1}^{m} F_k} = \frac{F_{m+3}-1}{F_{m+2}-1} \approx \varphi \dots \tag{9}$

結果、約1/N で時間分解能が向上する。サンプリング点が 位相にランダムに現れる場合は1//N、サンプリング点が位 相を等分する場合は1/N の時間分解能なので、黄金比サン プリングによって隣接するサンプリング点間の最大の距離 と最小の距離の比を小さく保ったまま高効率な波形取得が なされることがわかる。

Fig. 7 Sampling order with the golden ratio sampling starting from phase 0 (16 points).

表	1	図	7	のサ	$\boldsymbol{\mathcal{V}}$	プ	IJ	2	グ点	の位相	と	間隔
---	---	---	---	----	----------------------------	---	----	---	----	-----	---	----

Table 1	Sampled phases	s and their	gaps (Fig.	7)
---------	----------------	-------------	------------	----

No.	Phase	Phase 1	Distance	Max. Step Min. Step	
1	0.000	0.619		1	1
2	0.618	0.018	0.382	0.618	0.382
3	0.236	0 (19		0.382	0.236
4	0.854	0.018	0.202	0.382	0.146
5	0.472	0.282	0.382	0.236	0.146
6	0.090	0.382	0.618	0.236	0.090
7	0.708	0.282		0.236	0.090
8	0.326	0.382	0.618	0.146	0.090
9	0.944	0.202		0.146	0.056
10	0.562	0.382	0.292	0.146	0.056
11	0.180	0 (19	0.382	0.146	0.056
12	0.798	0.018	0.292	0.146	0.056
13	0.416	0.202	0.382	0.090	0.056
14	0.034	0.382	0.610	0.090	0.034
15	0.652	0.291	0.018	0.090	0.034
16	0.271	0.381		0.090	0.034

 図 8 黄金比サンプリングしたときの
隣接するサンプリング点間の最大・最小距離の推移
Fig. 8 Maximum and minimum steps in golden ratio sampling.

4. 貴金属比サンプリング

貴金属比(1:Mとおく)とは、

$$1:\frac{n+\sqrt{n^2+4}}{2}$$

 $(n = 1, 2, 3, \cdots)$ (10)

の比である。n=1の場合は黄金比であり、n=2の場合は 白銀比、n=3の場合は青銅比と呼ばれる。被測定信号とサ ンプリング・クロックの周波数比を貴金属比にすることを 貴金属比サンプリングと呼ぶ。フィボナッチ数列の隣り合 う項の比の極限が黄金比になるように、第n貴金属数にも 隣り合う項の比の極限が貴金属比になる数列が存在する (式11)。

 $F_0 = 0, F_1 = 1, F_{m+2} = nF_{m+1} + F_m$(11) 図 9 に白銀比サンプリングしたとき、図 10 に青銅比サ ンプリングしたときのサンプリング点数毎の隣接するサン プリング点の最大・最小の距離を示す。最小の距離は

 $F_0 = 1$, $F_1 = n - 1$, $F_{m+2} = nF_{m+1} + F_m$

(*m* = 0,1,2,…).....(1 2) 点毎に 1 /**M** 倍になっている。また、最大の距離は

 $F_0 = 0, \ F_1 = 1, \ F_{m+2} = nF_{m+1} + F_m$

 $(m = 0_1 \cdots 0_n, 1_1 \cdots 1_n, 2_1 \cdots 2_n, \cdots)$(13) 点毎に減少しており、 nF_m 点毎に 1/M 倍となっている。

サンプリング中に同時に出現するサンプリング点間の距離の値はnの値に関わらず2~3個であり、それらの比の 最大は、n+1パターン存在し

1: M – m

(while M - m > 1, m = -1, 0, 1, 2, ...)......(14) となっている。つまり、隣接するサンプリング点間の最大の 距離と最小の距離の比を小さく保ったままサンプリングで きる。また、黄金比サンプリングと同様にして、約1/Nで 時間分解能が向上している。

n=1 (黄金比)の場合が最大の距離と最小の距離の比が 一番小さく、数字が増えるにつれ比が大きくなっていく。し かし、一周期当たりのサンプリング数が増加するため、高速 にサンプリングすることができる。

5. まとめ

本論文では、貴金属比を用いた等価時間サンプリングで の効率的波形取得条件について検討した。黄金比サンプリ ングするとサンプリング点間の比を保ったまま高効率にサ ンプリングできることは確認できていたが、貴金属比サン プリングでも同様に高効率にサンプリングすることができ ることを今回新たに確認した。黄金比サンプリングの場合 は被測定信号の一回の繰り返しにつき1~2点しかサンプ リングできないが最も効率が良く、貴金属比サンプリング の場合は一回の繰り返し毎にサンプリングできる点数を増 やすことができるため高速である。

図 9 白銀比サンプリングしたときの 隣接するサンプリング点間の最大・最小距離の推移 Fig. 9 Maximum and minimum steps

in silver ratio sampling.

図 10 青銅比サンプリングしたときの 隣接するサンプリング点間の最大・最小距離の推移

Fig. 10 Maximum and minimum steps in bronze ratio sampling.

文 献

- D. E. Toeppen : "Acquisition Clock Dithering in a Digital Oscilloscope", Hewlett-Packard Journal, Vol.48, No.2 pp.26-28 (1997)
- (2) K. Rush and D. J. Oldfield : "A Data Acquisition System for 1-GHz Digitizing Oscilloscope", Hewlett-Packard Journal, Vol.37, No.4 pp.4-11 (1986)
- (3) M. Kimura, A. Minegishi, K. Kobayashi, and H. Kobayashi : "A New Coherent Sampling System with a Triggered Time Interpolation", IEICE Trans. On Fundamentals, Vol.E84-A, No.3 pp.713-719 (2001)
- (4) M. Kimura, K. Kobayashi, and H. Kobayashi : "A Quasi-Coherent Sampling Method for Wideband Data Acquisition", IEICE Trans. On Fundamentals, Vol.E85-A, No.4 pp.757-763 (2002)
- (5) Y. Sasaki, Y. Zhao, Anna Kuwana, and H. Kobayashi : "Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System", 27th IEEE Asian Test Symposium, Hefei, Anhui, China (2018)