

Accurate Testing of Precision Voltage Reference by DC-AC Conversion

29th IEEE Asian Test Symposium(ATS 2020)

ROHM Co.,Ltd Keno Sato, Takashi Ishida, Toshiyuki Okamoto, Tamotsu Ichikawa Gunma University Takayuki Nakatani, Anna Kuwana, Kazumi Hatayama, Haruo Kobayashi

To achieve

- ✓ High accuracy
- Small variation(repeatability)
- Short time testing
- with Auto Test Equipment(ATE)
- Target Device

Precision voltage reference output voltage 2.048V (±0.04%)

Requirement

- Background and Motivation
 - Conventional Test Method
 - Difficulty
- Proposed Method
 - DC-AC Conversion and

FFT spectrum analysis method

- Accurate and clean system reference
- Multi-Site Testing
- Conclusion

- Background and Motivation
 - Conventional Test Method
 - Difficulty
- Proposed Method
 - DC-AC Conversion and
 - FFT spectrum analysis method
 - Accurate and clean system reference
 - Multi-Site Testing
- Conclusion

A precision voltage reference is one of key components of IoT system

Conventional Method

Usage of High Accuracy Digital Multimeter

KEYSIGHT 3458A 8¹/₂Digit

- Background and Motivation
 - Conventional Test Method
 - Difficulty
- Proposed Method
 - DC-AC Conversion and
 - FFT spectrum analysis method
 - Accurate and clean system reference
 - Multi-Site Testing
- Conclusion

Difficulty

Test time(Multi-Site)

Single

Multi

Unrealistic Situation

Difficulty

- Accuracy of ATE $\pm 809.6\mu V$
- Variation 270µV

Actual situation

Variation with environmental noise

Not satisfy the target

We need new test method

To solve the difficulties

- ✓ High accuracy
- Small variation(repeatability)
- Short time testing
- with Auto Test Equipment(ATE)

Idea

- Background and Motivation
 - Conventional Test Method
 - Difficulty
- Proposed Method
 - DC-AC Conversion and

FFT spectrum analysis method

- Accurate and clean system reference
- Multi-Site Testing
- Conclusion

DC-AC Conversion and FFT spectrum analysis method

DC Voltage AC Square Wave Fast Fourier Transform

DC Voltage is converted to Fundamental Power Spectrum

Simulation

FFT result

DC-AC Conversion Clock: 1 kHz (duty 50 %) CMOS Switch: 4053 LTspice FFT Condition: Fs = 409.6 kHz, Fres = 100 Hz, N = 4096, Rectangle Window

High accuracy for small voltage is feasible Thanks to FFT, system noises can be ignored

Result of Experiment Environment

Switch: CMOS Analog SW IC (4053) Environment

- LabVIEW
- NI USB-6003 (16bit ADC,Fs=100kHz)

Fs = 100 kHz, N = 16384,

DC-AC conversion and FFT spectrum analysis

Device : Precision Voltage Reference Output voltage : 2.048V

Problem point

System reference needs improvement

- Background and Motivation
 - Conventional Test Method
 - Difficulty
- Proposed Method
 - DC-AC Conversion and

FFT spectrum analysis method

- Accurate and clean system reference
- Multi-Site Testing
- Conclusion

Cause of problem in system reference

DC-AC conversion input and system reference circuit

Noise at clock frequency directly affects result

Accurate and clean system reference

Single reference sources

Simulation result of noise density(single)

Parallel reference sources

Simulation result of noise density(4parallel)

Parallel sources make very clean voltage

Accurate and clean system reference is produced

- Background and Motivation
 - Conventional Test Method
 - Difficulty
- Proposed Method
 - DC-AC Conversion and
 - FFT spectrum analysis method
 - Accurate and clean system reference
 - Multi-Site Testing
- Conclusion

Configuration and Operation

Multi-site testing is possible

Four-Site Testing Measured Spectrum

Sampling Rate: 100 kHz , Sample: 10k, Averaging: 100, Frequency Resolution: 10 Hz Ch1 =1.0 kHz, Ch2 = 1.2 kHz, Ch3 = 1.4 kHz, Ch4 = 1.6 kHz

Multi-site testing is applicable to small voltage measurement

Usage of System reference voltage

Effective in Precision Voltage Reference

- Background and Motivation
 - Conventional Test Method
 - Difficulty
- Proposed Method
 - DC-AC Conversion and
 - FFT spectrum analysis method
 - Very clean system reference voltage
 - Multi-Site Testing
- Conclusion

Solved problems

1. Noise at Test Environment

Testing is NOT affected by environmental noise

2. Accuracy and Noise of System Reference

Accuracy and the cause of variation can be improved

3. Test Time

Testing method is applicable to multi-site testing

Proposed DC-AC conversion and FFT analysis method is applicable to Precision Voltage Reference with ATE

ROHM SEMICONDUCTOR

ROHM Co., Ltd. © 2020 ROHM Co., Ltd.