

Analysis and Design of Multi-Tone Signal Generation Algorithms for Reducing Crest Factor

Yukiko Shibasaki, Koji Asami, <u>Riho Aoki</u>, Akemi Hatta, Anna Kuwana, Haruo Kobayashi

Division of Electronics and Informatics Gunma University Advantest Laboratories Ltd.

ADVANTEST

Kobayashi Lab. S Gunma University

- Research Background
- Multi-tone Signal
- Simulation Result for Several Algorithms
- Analysis of Commonality of Four Algorithms
- Conclusion

- Research Background
- Multi-tone Signal
- Simulation Result for Several Algorithms
- Analysis of Commonality of Four Algorithms
- Conclusion

Test Cost Reduction

Decline in silicon manufacturing costs & High integration of LSI

Percentage of test cost : increase

Importance of test cost reduction by shortening test time

Outline

- Research Background
- Multi-tone Signal
- Simulation Result for Several Algorithms
- Analysis of Commonality of Four Algorithms
- Conclusion

What is Multi-tone Signal?

Sum of multiple tone signals with different frequencies

Frequency Response Measurement

Use of Multi-tone Signals

Use of Multi-tone Signals

What is Crest Factor (CF)?

Crest factor (CF) reduction = Amplitude of each tone signal: Large

Improve SNR for multi-tone signals

Factors for Worsening SNR

When testing a wideband signal device

The number of tones (N) : Increase

Maximum amplitude of multi-tone signal : Increase

Not designed to handle

In-phase tone signal

For IMD reduction IMD: intermodulation distortion Generates multi-tone signal within a fixed voltage range

Amplification for each tone : $Small \Rightarrow SNR : Low$

Phase Shift of Each Tone

Crest factor (CF): Reduction

Amplification for each tone: Large

Outline

- Research Background
- Multi-tone Signal
- Simulation Result for Several Algorithms
- Analysis of Commonality of

Four algorithms

Conclusion

In-phase Multi-tone Signal

Basic
equation :
$$s(t) = G \sum_{k=1}^{N} cos(\frac{2\pi f_k t}{T} + \theta_k)$$

 $G = 1/A_{max}$: Amplitude of
each tone

each tone T = 8192 N = 1024 CF = 33[dB] G = 9.8×10^{-4} 1 0.5 Amplitude ^{-0.5} -1 4000 6000 2000 8000

Time

Random Phase Multi-tone Signal Signal

Basic
equation :
$$s(t) = G \sum_{k=1}^{N} cos(\frac{2\pi f_k t}{T} + \theta_k)$$

N : number of tones T : resolution of 1 cycle θ_k : random number

 $G = 1/A_{max}$: Amplitude of each tone

T = 8192 N = 1024 CF = 16[dB] G = 6.6×10^{-3}

Relationship between N and CF

Number of tones N:Large \rightarrow Crest factor:Large

SNR deterioration in wideband test

Crest Factor Reduction Algorithm

Basic
equation :
$$s(t) = G \sum_{k=1}^{N} cos(\frac{2\pi f_k t}{T} + \theta_k)$$

N : number of tones

T : resolution of 1 cycle

Newman Phase	$\theta_k = \frac{\pi}{N}(k-1)^2$
Kitayoshi Phase	$\theta_k = \frac{\pi}{N}k(k+1)$
Schroeder Phase	$\theta_{k} = -\frac{\pi}{N}k(k-1)$
Narahashi Phase	$\theta_k = \frac{\pi}{N-1}(k-1)(k-2)$

Newman Phase Waveform

$$s(t) = G \sum_{k=1}^{m} cos(\frac{2\pi f_k t}{T} + \frac{\pi}{N}(k-1)^2)$$

Normalize the amplitude to 1 $G = 1/A_{max}$ = Amplitude of each tone

Relationship between N and CF

Zero phase Random phase : CF increases with N Four algorithms : CF reduction

Improve SNR by algorithm

Comparison of Four Algorithms

CF reduction effect is almost equal

Analyze similarity of four algorithms

- Research Background
- Multi-tone Signal
- Simulation Result for Several Algorithms
- Analysis of Commonality of Four Algorithms
- Conclusion

Four Algorithms

Newman Phase	$\theta_{k} = \frac{\pi}{N}(k-1)^{2}$
Kitayoshi Phase	$\theta_{k} = \frac{\pi}{N}k(k+1)$
Schroeder Phase	$\theta_k = -\frac{\pi}{N}k(k-1)$
Narahashi Phase	$\theta_{k} = \frac{\pi}{N-1}(k-1)(k-2)$

Derivation of Narahashi Phase

Derivation of PAPR (Crest Factor)

$$PAPR = \frac{PEP}{P_{av}} = \frac{max[EP(t)]}{NA^2} = max \left[1 + \frac{2}{N} \sum_{k=1}^{N-1} \sum_{l=k+1}^{N} \cos(2\pi(l-k)\Delta f_0 t + \theta_l - \theta_k) \right]$$

 $P_0(t)$: Fluctuation from the average power

$$P_{0}(t) = \sum_{k=1}^{N-1} \cos(2\pi \cdot 1 \cdot \Delta f_{0}t + \theta_{k+1} - \theta_{k})$$

$$Ist summation term$$

$$+ \sum_{k=1}^{N-2} \cos(2\pi \cdot 2 \cdot \Delta f_{0}t + \theta_{k+2} - \theta_{k})$$

$$Ist summation term$$

$$+ \cos(2\pi \cdot (N-1) \cdot \Delta f_{0}t + \theta_{N} - \theta_{1})$$

$$Summation term$$

$$Ind summation term$$

Determine θ_k where the 1st summation term becomes zero

Vector Diagram of 1st Summation Term^{26/41}

Angle Formed by Each Vector Φ_k

110

Symmetrical Polyphase AC Circuit

Set 1st Summation Term to Zero

Basic equation of Narahashi phase

Narahashi Phase
$$\theta_k = \frac{\pi}{N-1}(k-1)(k-2)$$

 $\Phi_k = (\theta_{k+1} - \theta_k) - (\theta_k - \theta_{k-1})$ $\Phi_k = \frac{2\pi}{\text{Number of vectors}} = \frac{2\pi}{N-1}$
 $\{\theta_{k+1} - \theta_k\} - \{\theta_k - \theta_{k-1}\} = \frac{2\pi}{N-1}$
 $\{\theta_{k+1} - \theta_k\} - \{\theta_k - \theta_{k-1}\} = \frac{2\pi}{N-1}$
Solving for θ_k
Basic equation of Narahashi phase $: \theta_k = (k-1)\theta_2 - (k-2)\theta_1 + \frac{(k-1)(k-2)}{N-1}\pi$

30/41

N-1

Narahashi Phase

Newman Phase

$$\theta_k = \frac{(k-1)^2}{N}\pi$$

Matches Narahashi phase

What is the difference between the initial phase equations?

Basic equation of the Narahashi phase:

$$\theta_{k} = (k-1)\theta_{2} - (k-2)\theta_{1} + \frac{(k-1)(k-2)}{N}\pi$$

$$\int \text{Solving for } k$$

$$\theta_{k} = \frac{\pi}{N}k^{2} + \left(-\frac{3\pi}{N} + \theta_{2} - \theta_{1}\right)k + \left(\frac{2\pi}{N} - \theta_{2} + 2\theta_{1}\right)\cdots(1)$$

Newman Phase:

 $heta_1=0$, $heta_2=rac{\pi}{N}$

$$\theta_k = \frac{(k-1)^2}{N}\pi = \frac{\pi}{N}k^2 - 2 \cdot \frac{\pi}{N}k + \frac{\pi}{N}\dots 2$$

Comparing the coefficients between 1 and 2

Simply changing the setting values of θ_1 and θ_2

Kitayoshi Phase

$$\theta_{k} = \frac{\pi}{N}k(k+1)$$

Matches Narahashi phase and Newman phase

Difference between Narahashi and Kitayoshi

Basic equation of the Narahashi phase:

$$\theta_{k} = (k-1)\theta_{2} - (k-2)\theta_{1} + \frac{(k-1)(k-2)}{N}\pi$$

$$\int \text{Solving for } k$$

$$\theta_{k} = \frac{\pi}{N}k^{2} + \left(-\frac{3\pi}{N} + \theta_{2} - \theta_{1}\right)k + \left(\frac{2\pi}{N} - \theta_{2} + 2\theta_{1}\right)\cdots(1)$$

Kitayoshi Phase:

$$\theta_{k} = \frac{\pi}{N}k(k+1) = \frac{\pi}{N}k^{2} + \frac{\pi}{N}k\cdots(2)$$
Comparing the coefficients between (1) and (2)

$$\theta_1 = \frac{2\pi}{N}$$
, $\theta_2 = \frac{6\pi}{N}$

Simply changing the setting values of θ_1 and θ_2

Schroeder Phase

$$\theta_{k} = \frac{\pi}{N}k(k-1)$$

Matches Narahashi phase and Newman phase and Kitayoshi phase

111

Difference between Narahashi and Schroeder

Basic equation of the Narahashi phase:

$$\theta_{k} = (k-1)\theta_{2} - (k-2)\theta_{1} + \frac{(k-1)(k-2)}{N}\pi$$

$$\int \text{Solving for } k$$

$$\theta_{k} = \frac{\pi}{N}k^{2} + \left(-\frac{3\pi}{N} + \theta_{2} - \theta_{1}\right)k + \left(\frac{2\pi}{N} - \theta_{2} + 2\theta_{1}\right)\cdots (1)$$

Schroeder Phase:

 $\theta_1 = 0, \theta_2 = \frac{2\pi}{N}$

$$\theta_{k} = \frac{\pi}{N}k(k-1) = \frac{\pi}{N}k^{2} - \frac{\pi}{N}k\cdots2$$
Comparing the coefficients between 1 and 2

Simply changing the setting values of θ_1 and θ_2

Unification of Initial Phase Setting Equations

- Research Background
- Multi-tone Signal
- Simulation Result for Several Algorithms
- Analysis of Commonality of Four Algorithms
- Conclusion

Conclusion

- In algorithms for reducing CF, we can unify the four algorithms by analyzing the second derivative of θ_k.
- Proper multi-tone signal generation algorithms can reduce CF.

Four Algorithms References

Newman Phase

D. J. Newman, "An L1 Extremal Problem for Polynomials," Proc. Amer. Math. Soc., no.16, pp. 1287-1290 (Dec. 1965).

Kitayoshi Phase

H. Kitayoshi, S. Sumida, K. Shirakawa, S. Takeshita, "DSP Synthesized Signal Source for Analog Testing Stimulus and New Test Method", IEEE International Test Conference, (Jan. 1985).

Schroeder Phase

M. R. Schroeder, "Synthesis of Low-Peak-Factor Signals and Binary Sequence with Low Autocorrelation," IEEE Trans. Information Theory, vol. 16, pp. 85-89 (Jan. 1970).

Narahashi Phase

S. Narahashi, T. Nojima, "Initial Phase Setting Method to Reduce Peak-to-Average Power Ratio (PAPR) of Multi-tone Signal," IEICE Transactions, vol J78-B-II, no.11, pp.663-670 (Nov. 1995).

- Q. Would you please explain more details about the improvement of SNR in your research?
 How to evaluate the improvement of SNR in the practical measurements?
 - Do you plain to extend the research in future work?

A. Reduce the crest factor.