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This paper presents a stability test for a third-order Sallen-Key low-pass filter. The self-loop function of this 

filter is derived based on an alternating current conservation technique. A passive balun transformer is used to 

measure the phase margin at unity gain of the self-loop function in an implemented circuit. The values of 

theoretical calculation are verified by the SPICE simulation and practical measurement results. Therefore, our 

proposed measurement technique is considered for examining the behavior of a linear network. 
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1. INTRODUCTION 

Mathematical models deal with the physical reality of 

the linear system (1). Moreover, its transfer function and 

self-loop function are very important because they give 

some useful information about stability and help us 

optimize the entire performance of a system (2). The most 

focus of recent researches is by the necessity on the 

theory that underlies the design, performance analysis 

and stability test of the various networks (3). From the 

view point of the complex function, the operating regions 

of a high-order system are classified as over-damping, 

critical damping, and under-damping. As a high-order 

system operates on the under-damping region, the 

damped oscillation noise causes ringing and makes the 

network unstable. Ringing or overshoot voltage occurs in 

both passive and active systems. In other words, it 

occurs in both feedback and non-feedback systems (4).  

To do the stability test of a feedback network, the 

conventional root locus, Nyquist plot, and Nichols plot 

techniques all make use of the complex plane (5). In the 

root locus method, if a system has poles that are in the 

right half plane, it will be unstable. Various stabilization 

conditions were derived using the Nyquist stability 

criterion. In most cases, Nyquist and Nichols theorems 

are used in theoretical analysis for feedback systems (6). 

Nyquist’s theorem shows that the polar plot of loop gain 

must not encircle the point (−1, 0), where the direction of 

the encirclement is clockwise (7). There are some 

limitations in the conventional methods: 

• The relationship between the transfer function 

and the loop gain in a general system is not 

clarified well. The loop gain is used only in the 

flow graph signal of a feedback system. The phase 

margin at unity gain of the loop gain is not 

analyzed mathematically well. 

• Behaviors of a high-order transfer function in 

passive and active systems are not studied clearly 

(8). In conventional measurement of the loop gain, 

the theoretical derivation and practical 

measurement are not well explained.  

• Sufficient numerical examples of the phase 

margin at unity gain of the loop gain are not 

introduced. Moreover, the relationship between 

the replica measurement and the Middlebrook’s 

method was not mentioned before. These methods 

were not applied to the stability test of high-order 

low-pass filters.  

To overcome the limitations of the conventional 

methods, the measurement of the phase margin at unity 

gain of the self-loop function is proposed to evaluate the 

quality of a high-order system. The motivation for this 

work on measurement of the self-loop function is coming 

from the high degree of performance capabilities; 

therefore, the investigation of the phase margin at unity 

gain of the self-loop function has been the focal point of 

extensive research work. 

In wireless communication systems, high-order active 

low-pass filters are widely used. Moreover, to reduce the 

white noise and random noise, the differential 

architectures are used in many deigns. This paper also 

introduces a topology of a differential third-order 
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Sallen-Key low-pass filter.  

This paper contains a total of 5 sections. Section 2 

presents the basic research background. Section 3 

mathematically analyzes a third-order differential 

Sallen-Key low pass filter in details. Experimental 

results of measurements of self-loop functions are 

described in Section 4. The main points of this work are 

summarized in Section 5.  

2.  MODELS OF ELECTRONIC SYSTEMS 

Passive and active linear networks can be modeled by 

the transfer functions. When the input source, output 

signal, and some other sources in the internal dynamics 

of a network are known, the transfer function is used to 

examine the behavior of the network. The transfer 

function H(ω) of a filter is the ratio of the output signal 

Vout(ω) to the input signal Vin(ω) as a function of the 

frequency. A general transfer function is rewritten as 
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Here, A(ω) is the numerator function of the transfer 

function, and L(ω) is the self-loop function in the 

denominator of the self-loop function. A self-loop function 

analysis is a very useful tool for linear systems. The 

phase margin of the self-loop function is directly related 

to the transient response of a system.  

Fig. 1 shows a setup using the alternating current 

conservation method using a balun transformer to 

measure the self-loop function (9). The main idea of this 

method is that the alternating current is conserved. In 

other words, at the output node the incident alternating 

current is equal to the transmitted alternating current. 

If we inject an alternating current source (or alternating 

voltage source) at the output node, the self-loop function 

can be derived by ratio of the incident voltage (Vinc) and 

the transmitted voltage (Vtrans). Apply the widened 

superposition principle at Vinc and Vtrans nodes, and then 

the self-loop function is derived as 
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Fig. 1. Derivation of the self-loop function 

3.  THIRD-ORDER SALLEN-KEY FILTER  

3.1. Fully differential two-stage op amp 

Fully differential op amp has two input sources and two 

output signals which are called positive output and 

negative output. These output voltages are equal, but 

opposite in polarity referenced to the common-mode 

operating point of the circuit as shown in Fig. 2.  
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(a) Fully-differential two-stage op amp. 

 

(b) Small signal model of the second-stage. 

Fig. 2. Schematic of the fully-differential op amp. 

The transfer function and the self-loop function are 

derived as 
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Where, the values of the constant variables are 
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The transfer function at the second-stage of op amp is a 

fourth-order complex function. The Miller’s capacitor will 

affect the operating region of the total op amp. Here, the 

designed gain bandwidth and the DC gain of the fully 

differential op amp are GBW =10 MHz, Ao = 100000, 

respectively. The cut-off frequency is designed at 100 Hz. 

The open-loop function A(ω) and self-loop function L(ω) of 

the op amp are 
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Fig. 3. Bode plots of the self-loop function L(ω). 

The frequency responses of the self-loop function of the 

op amp are shown in Fig. 3. The phase margin at unity 

gain of the self-loop function is 90-degrees, this op amp is 

absolutely stable. 

3.2. Design of third-order Sallen-key LPF 

Differential topology is applied in many active low-pass 

filters. From a differential low-pass filter, we can design 

an active complex filter (10). In this paper, we introduce a 

differential third-order low-pass filter based on the 

Sallen-Key’s connection. Fig. 4 shows the proposed 

design of a differential third-order Sallen-Key low-pass 

filter. The values of passive components are resistors R1 

= R2 = R3 = 10 kΩ, R4 = 100 Ω, R5 = 100 kΩ, capacitors C1 

= 350 pF, C2 = 2 nF, at the cut-off frequency f0= 10 kHz. 

Three values of capacitor C3 (2 nF, 1 nF, and 0.2 nF) are 

used to examine the behaviors of the differential 

third-order Sallen-Key low-pass filter. 

 

Fig. 4. Schematic of the proposed design. 

Its transfer function and self-loop function are 

( )
( ) ( )

( ) ( ) ( )

0

3 2

0 1 2

3 2

0 1 2

;
1

;

b
H

a j a j a j

L a j a j a j

 =
 +  + +

 =  +  + 

 
(5) 

Here, the given values of constant variables are 
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3.3. Behavior of third-order Sallen-key LPF 
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The behaviours of the proposed design of a differential 

third-order Sallen-Key low-pass filter are described in 

Fig. 5. In case of the under-damping, the overshoot 

causes extra voltage and makes the system unstable. 

The Bode plots of the transfer function show that the 

-3dB bandwidth cannot be applied for high-order 

transfer function. In case of critical damping, the 

magnitude of the transfer function at the cut-off 

frequency is -9 dB, the phase is -135 degrees. 

 

Fig. 5. Bode plots of the transfer function. 

3.4. Stability test for third-order Sallen-Key LPF 

Two identical balun transformers are used to derive the 

self-loop function of the third-order differential 

Sallen-Key low-pass filter as shown in Fig. 6.  

The Bode plots of the self-loop function are used to 

investigate the operating region of the proposed design 

filter. Fig. 7 shows the phase margin at unity gain of the 

self-loop function in the frequency domain.  

Simulation results of third-order self-loop functions show 

that the phase margin of the over-damping is 79-degrees, 

critical damping 72-degrees, and under-damping 

60-degrees. 

 

Fig. 6. Schematic of the derivation of the self-loop function. 

 

Fig. 7. Bode plots of the self-loop function. 

4.  EXPERIMENTAL RESULTS 

4.1. Implementation of third-order Sallen-Key LPF 

Fig. 8 shows the schematic and the implemented circuit 

of the designed third-order Sallen-Key low-pass filter. A 

commercial op amp LM358 was used in this 

implementation.  
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(a) Schematic of the third-order Sallen-Key LPF. 

 

(b) Implemented circuit. 

Fig. 8. Design of the third-order Sallen-Key LPF. 

The values of passive components are resistors R1 = R2 

= R3 = 10 kΩ, R4 = 100 Ω, R5 = 100 kΩ, capacitors C1 = 

350 pF, C2 = 2 nF, at the cut-off frequency f0 = 3 kHz. A 

passive 10 mH balun transformer was used to measure 

the phase margin at unity gain of the self-loop function. 

4.2. Measurement set up 

When an active low-pass filter circuit was designed, it is 

important to know the behavior of the transfer function 

of the used low-pass filter. Network analyzer, spectrum 

analyzer, signal generator, oscilloscope, and power 

supply were used to perform the measurements. 

 

 

Fig. 9. Measurement set up of implemented circuit. 

4.3. Measurement results 

Fig. 10 shows the measurement results of the frequency 

responses of third-order Sallen-Key filters. The cut-off 

frequency of the implemented third-order Sallen-Key is 

designed at 3 kHz. In case of the under-damping, the 

overshoot is very high 2.8 V compared to the desired 

level 0.5 V. The measured waveforms of the transient 

responses are plotted in Fig. 11.  

 

Fig. 10. Measurement results of frequency responses 

 

Fig. 11. Measurement of transient responses. 

4.4. Phase margin of third-order Sallen-key LPF 

The gain margins at unity gain of the self-loop functions 

are shown in Fig. 12.  
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Fig. 12. Measurement results of self-loop functions. 

The impedance of the passive balun transformer affects 

the input impedance of the measurement probes. The 

measurement results of self-loop functions show that the 

phase margin of under-damping is 47 degrees. The phase 

margin of critical damping is 49.5 degrees (still 

under-damping). The phase margin of case 3 is 52.5 

degrees (near critical damping). 

5.  CONCLUSION 

In this paper it has been shown the theoretical analysis 

of a third-order self-loop function and the measurements 

of the proposed designs of a third-order Sallen-Key 

low-pass filter. In order to show the operating regions of 

single-ended and differential third-order low-pass filters, 

the transfer function and its self-loop function are 

determined.  

The simulation results were verified by the practical 

measurements. In the work the stability test is not only 

analyzed by the numerical examples but also performed 

by the experimental results of measurements of the 

designed circuit. In case of a second-order low-pass filter, 

if its phase margin is smaller than 76.3-degrees, this 

network is unstable. 

The self-loop function of a low-pass filter gives useful 

information about the relative stability and helps us 

optimize the closed-loop performance. The self-loop 

function can be directly calculated based on the widened 

superposition principle. The alternating current 

conservation technique can measure the self-loop 

function of low-pass filters. Compared to the 

measurement results with mathematical analysis, the 

properties of self-loop functions are the same. 

In future of work, we will investigate the behaviors of 

high-order complex filters based on the Sallen-Key 

low-pass connections. 
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