

【開催日】 2020年10月8·9日 【場所】 一(Web開催) 【論文番号】ECT-20-067

Measurement of Self-Loop Function and Stability Test for Third-Order Sallen-Key Low-Pass Filters

MinhTri Tran, Anna Kuwana, Haruo Kobayashi

Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Japan

Outline

1. Research Background

- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Analysis of High-Order Transfer Functions
- Operating regions of second-order complex functions
- **3. Ringing Test for Unity-Gain Amplifiers**
- Behaviors of op amps with feedback networks
- 4. Ringing Test for High-Order Low-Pass Filters
- Behaviors of Sallen-Key low-pass filters
- 5. Conclusions

1. Research Background

Noise in Electronic Systems

Performance of a system

Signal to Noise Ratio:

Common types of noise:

- Electronic noise
- Thermal noise,
- Intermodulation noise,
- Cross-talk,
- Impulse noise,
- Shot noise, and
- Transit-time noise.

Performance of a device

 $\mathbf{F} = \frac{\mathbf{Output \ SNR}}{\mathbf{Input \ SNR}}$

Device noise:

- Flicker noise,
- Thermal noise,
- White noise.

Linear networks

- Overshoot,
- Ringing

1. Research Background Motivation of Study

Ringing represents a distortion of a signal. Ringing is overshoot/undershoot voltage or current when it's seen on time domain.

Ringing does the following things:

- Causes EMI noise,
- Increases current flow,
- Consumes the power,
- Decreases the performance, and
- Damages the devices.

• Ringing affects both input and output signals.

1. Research Background

Objectives and Achievements

Objectives

- Investigation of operating regions of linear negative feedback networks
- Over-damping (high delay in rising time)
- Critical damping (max power propagation)
- → Under-damping (overshoot and ringing)

Achievements

 Measurement of self-loop function and stability test for 3rd-order Sallen-Key low-pass filters.

1. Research Background Approaching Methods

2nd-order Sallen-Key LPF

3rd-order Sallen-Key LPF

Balun transformer

Implemented circuit

1. Research Background Self-loop Function in A Transfer Function

Linear system

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

○Polar chart → Nyquist chart
 ○Magnitude-frequency plot
 ○Angular-frequency plot
 ○Magnitude-angular diagram → Nichols diagram

Model of a linear system

$$H(\boldsymbol{\omega}) = \frac{b_0(j\omega)^n + \dots + b_{n-1}(j\omega) + b_n}{a_0(j\omega)^n + \dots + a_{n-1}(j\omega) + a_n}$$

 $A(\omega)$: Open loop function $H(\omega)$: Transfer function $L(\omega)$: Self-loop function Variable: angular frequency (ω)

6

1. Research Background

Characteristics of Adaptive Feedback Network

Adaptive feedback is used to control the output source along with the decision source (DC-DC Buck converter).
 Transfer function of an adaptive feedback network is significantly different from transfer function of a linear negative feedback network.

→ Loop gain is independent of frequency variable (referent voltage, feedback voltage, and error voltage are DC voltages).

1. Research Background Alternating Current Conservation

Transfer function

Simplified linear system

Self-loop function

10 mH inductance

Derivation of self-loop function

1. Research Background Limitations of Conventional Methods

- Middlebrook's measurement of loop gain
- → Applying only in feedback systems (DC-DC converters).
- **o Replica measurement of loop gain**
- →Using two identical networks (not real measurement).
- Nyquist's stability condition
- → Theoretical analysis for feedback systems (Lab tool)
- **O Nichols Chart of Loop Gain**
- → Only used in feedback control theory (Lab tool)

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Analysis of High-Order Transfer Functions
- Operating regions of second-order complex functions
- **3. Ringing Test for Unity-Gain Amplifiers**
- Behaviors of op amps with feedback networks
- 4. Ringing Test for High-Order Low-Pass Filters
- Behaviors of Sallen-Key low-pass filters
- 5. Conclusions

2. Analysis of High-Order Transfer Functions Operating Regions of 2nd-order Transfer Function

2. Analysis of High-Order Transfer Functions Summary of 2nd-order Transfer Function

Second-order transfer function: $H(\omega)$

$$= \frac{1}{1 + a_0 (j\omega)^2 + a_1 j\omega}$$

Case	Over-damping	Critical damping	Under-damping	
Delta (Δ)	$\frac{1}{a_0} < \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 > 0$	$\frac{1}{a_0} = \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 = 0$	$\frac{1}{a_0} > \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 < 0$	
$\begin{array}{c} \textbf{Module} \\ H(\omega) \end{array}$	$\frac{\frac{1}{a_0}}{\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}$	$\frac{1}{a_0} \frac{1}{\left[\omega^2 + \left(\frac{a_1}{2a_0}\right)^2\right]} = -6dB$	$\frac{\frac{1}{a_0}}{\sqrt{\left(\omega - \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}\right)^2 + \left(\frac{a_1}{2a_0}\right)^2}\sqrt{\left(\omega + \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}\right)^2 + \left(\frac{a_1}{2a_0}\right)^2}}$	
Angular $\theta(\omega)$	$-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}-\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}+\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}\right)$	$-2 \arctan\left(\frac{2a_0\omega}{a_1}\right)$	$-\arctan\left(\frac{\omega - \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right) - \arctan\left(\frac{\omega + \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)$	
$\omega_{cut} = \frac{a_1}{2a_0}$	$ H(\omega_{cut}) < \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) > -\frac{\pi}{2}$	$\left H(\omega_{cut}) \right = \frac{2a_0}{a_1} \theta(\omega_{cut}) = -\frac{\pi}{2}$	$ H(\omega_{cut}) > \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) < -\frac{\pi}{2}$	

2. Analysis of High-Order Transfer Functions Operating regions of 2nd-order Self-loop Function

Nyquist chart of self-loop function

Bode plot of self-loop function

-12dB -16dB 0.2Hz 0.3Hz 0.4Hz 0.5Hz 0.6Hz 0.7Hz 0.8Hz 0.9Hz 1.0Hz Frequency (Hz)

2. Analysis of High-Order Transfer Functions Summary of 2nd-order Self-loop Function

Second-order self-loop function: $L(\omega) = j\omega [a_0 j\omega + a_1]$

Case	Over-damping		Critical damping		Under-damping	
Delta (Δ)	$\Delta = a_1^2 - 4a_0 > 0$		$\Delta = a_1^2 - 4a_0 = 0$		$\Delta = a_1^2 - 4a_0 < 0$	
$ L(\omega) $	$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2} \qquad \omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$(b)^2 + a_1^2$	$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		
θ(ω)	$\frac{\pi}{2}$ +	$\arctan \frac{a_0 \omega}{a_1}$	$\frac{\pi}{2}$ + arctan $\frac{a_0\omega}{a_1}$		$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$	
$\omega_1 = \frac{a_1}{2a_0}\sqrt{\sqrt{5}-2}$	$ L(\omega_1) > 1$	$\pi - \theta(\omega_1) > 76.3^{\circ}$	$ L(\omega_1) = 1$	$\pi - \theta(\omega_1) = 76.3^\circ$	$ L(\omega_1) < 1$	$\pi - \theta(\omega_1) < 76.3^\circ$
$\omega_2 = \frac{a_1}{2a_0}$	$ L(\omega_2) > \sqrt{5}$	$\pi - \theta(\omega_2) > 63.4^{\circ}$	$\left L(\omega_2)\right = \sqrt{5}$	$\pi - \theta(\omega_2) = 63.4^{\circ}$	$\left L(\omega_2)\right < \sqrt{5}$	$\pi - \theta(\omega_2) < 63.4^{\circ}$
$\omega_3 = \frac{a_1}{a_0}$	$ L(\omega_3) > 4\sqrt{2}$	$\pi - \theta(\omega_3) > 45^{\circ}$	$\left L(\omega_3)\right = 4\sqrt{2}$	$\pi - \theta(\omega_3) = 45^\circ$	$\left L(\omega_3)\right < 4\sqrt{2}$	$\pi - \theta(\omega_3) < 45^\circ$

2. Analysis of High-Order Transfer Functions Operating Regions of 2nd-order System

Bode plot of transfer function Over-damping Under-damping Critical damping 5dB **OdB** 0dB -5dB 6dB Magnitude (dB) -10dB -15dB -12dB -20dB -25dB -30dB -35dB -40dB 100mHz 1Hz 10mHz 10Hz Frequency (Hz)

Transient response

Nichols plot of self-loop function

Over-damping: → Phase margin is 88 degrees. Critical damping: → Phase margin is 76.3 degrees. Under-damping: → Phase margin is 52 degrees.

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Analysis of High-Order Transfer Functions
- Operating regions of second-order complex functions
- 3. Ringing Test for Unity-Gain Amplifiers
- Behaviors of op amps with feedback networks
- 4. Ringing Test for High-Order Low-Pass Filters
- Behaviors of Sallen-Key low-pass filters
- 5. Conclusions

3. Ringing Test for Unity-Gain Amplifiers Two-stage Op Amp without Miller's Capacitor

Small signal model

Transfer function $H(\omega)$ and self-loop function $L(\omega)$

$$H(\omega) = \frac{b_0 j\omega + b_1}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$
$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega$$

Where,

$$b_{0} = R_{D}R_{S} \Big[\Big(C_{GD} + C_{DB} \Big) \Big(C_{GS} + C_{GD} \Big) - C_{GD}^{2} \Big]$$

$$b_{1} = \Big[R_{D} \Big(C_{GD} + C_{DB} \Big) + R_{S} \Big(C_{GS} + C_{GD} \Big) + R_{D}R_{S}g_{m}C_{GD} \Big]$$

$$a_{0} = R_{D}C_{GD}; a_{1} = -R_{D}g_{m};$$
17

3. Ringing Test for Unity-Gain Amplifiers Unity-Gain Amplifier without Miller's Capacitor

3. Ringing Test for Unity-Gain Amplifiers Two-stage Op Amp with Frequency Compensation

Transfer function

$$H(\omega) = \frac{b_0 (j\omega)^3 + b_1 (j\omega)^2 + b_2 j\omega + b_3}{a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega + 1};$$

Self-loop function

$$L(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega$$

3. **Ringing Test for Unity-Gain Amplifiers Stability Test for Op Amp with Miller's Capacitor**

Unity-gain amplifier with Miller's capacitor

function

function

Transient response Under-damping Over-damping 1.3 1.2 1.1 1.0 Amplitude (V) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 20 ns 40 ns 140 ns 0 60 ns 80 ns 100 ns 120 ns Time (s)

Operating regions

Under-damping: R1= 2 k Ω , C1 = 1 pF **Critical damping:** $R1 = 3.5 \text{ k}\Omega$, C1 = 0.2 pF**Over-damping:** R1 = $3.5 \text{ k}\Omega$, C1 = 0.8 pF

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Analysis of High-Order Transfer Functions
- Operating regions of second-order complex functions
- 3. Ringing Test for Unity-Gain Amplifiers
- Behaviors of op amps with feedback networks
- 4. Ringing Test for High-Order Low-Pass Filters
- Behaviors of Sallen-Key low-pass filters
- 5. Conclusions

4. Ringing Test for High-Order Low-Pass Filters **Review of 2nd-order Sallen-Key Low-pass Filter**

2nd-order Sallen-Key LPF R1 Vout)

Transfer function

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{b_0}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$

Self-loop function

$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega;$$

Operating regions

•Over-damping:

 $\frac{1}{R_1R_2C_1C_2} < \frac{1}{4} \left(R_1C_1 + R_1C_1 - \frac{R_3}{R_1}R_1C_2 \right)^2$

R3

•Critical damping: $\frac{1}{R_1R_2C_1C_2} = \frac{1}{4} \left(R_1C_1 + R_1C_1 - \frac{R_3}{R_1}R_1C_2 \right)^2$

• Under-damping: $\frac{1}{R_1R_2C_1C_2} > \frac{1}{4} \left(R_1C_1 + R_1C_1 - \frac{R_3}{R_1}R_1C_2 \right)^2$

Where:

$$\begin{split} \boldsymbol{\omega}_{0} &= \sqrt{R_{1}R_{2}C_{1}C_{2}};\\ \boldsymbol{a}_{0} &= R_{1}R_{2}C_{1}C_{2};\\ \boldsymbol{a}_{1} &= R_{1}C_{1} + R_{1}C_{1} - \frac{R_{3}}{R_{4}}R_{1}C_{2};\\ \boldsymbol{b}_{0} &= 1 + \frac{R_{3}}{R_{4}}; \end{split}$$

22

4. Ringing Test for High-Order Low-Pass Filters Proposed Design of 3rd-Order Sallen-Key LPF

Differential 3rd-order Sallen-Key LPF

Derivation of self-loop function

Transfer function

$$H(\omega) = \frac{b_0}{a_0(j\omega)^3 + a_1(j\omega)^2 + a_2j\omega + 1};$$

Self-loop function $L(\omega) = a_0 (j\omega)^3 + a_1 (j\omega)^2 + a_2 j\omega;$ Where $b_0 = 1 + \frac{R_4}{R_5}; a_0 = R_1 C_1 R_2 C_2 R_3 C_3;$ $a_1 = R_1 C_1 C_3 (R_2 + R_3) + R_3 C_2 C_3 (R_1 + R_2) - \frac{R_4}{R_5} R_1 C_1 R_2 C_2;$

$$\boldsymbol{a}_{2} = R_{1} (C_{1} + C_{3}) + C_{3} (R_{2} + R_{3}) - \frac{R_{4}}{R_{5}} (R_{1} + R_{2}) C_{2};$$

Component parameters

GBW = 10MHz, fo = 10kHz, DC gain (Ao) = 100000, R1 = R2 = R3 = 10 k Ω , R4 = 100 Ω , R5 = 100 k Ω , C1 = 350 pF, C2 = 2 nF. 23

4. Ringing Test for High-Order Low-Pass Filters Simulation Results of 3rd-Order Sallen-Key LPF

Transient response

Operating regions Over-damping: → Phase margin is 80 degrees. Critical damping: → Phase margin is 73 degrees. Under-damping: → Phase margin is 36 degrees. 24

4. Ringing Test for High-Order Low-Pass Filters Implemented Circuit of 3rd-Order Sallen-Key LPF

Single ended 3rd -order Sallen-Key LPF

Component parameters

Op Amp: LM358; GBW = 10MHz, DC gain (Ao) = 100000, R1 = R2 = R3 = 10 kΩ, R4 = 100 Ω, R5 = 100 kΩ, C1 = 350 pF, C2 = 2 nF.

Implemented circuit

4. Ringing Test for High-Order Low-Pass Filters Measurement Results of 3rd-Order Sallen-Key LPF

Transient response

Nichols plot of self-loop function

Over-damping: → Phase margin is 77 degrees. Critical damping: → Phase margin is 70 degrees. Under-damping: → Phase margin is 64 degrees.

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Analysis of High-Order Transfer Functions
- Operating regions of second-order complex functions
- 3. Ringing Test for Unity-Gain Amplifiers
- Behaviors of op amps with feedback networks
- 4. Ringing Test for High-Order Low-Pass Filters
- Behaviors of Sallen-Key low-pass filters

5. Conclusions

5. Comparison

Features	This work	Replica measurement	Middlebrook's method	
Main objective	Self-loop function	Loop gain	Loop gain	
Transfer function accuracy	Yes	No	Νο	
Ringing Test	Yes	Yes	Yes	
Operating region accuracy	Yes	No	No	
Phase margin accuracy	Yes	No	No	
Passive networks	Yes	Νο	Νο	

5. Discussions

- Loop gain is independent of frequency variable.
- Doop gain in adaptive feedback network is significantly different from self-loop function in linear negative feedback network.

Nichols chart is only used in MATLAB simulation.

https://www.mathworks.com/help/control/ref/nichols.html

Nichols chart isn't used widely in practical measurements (only used in control theory).

5. Conclusions

This work:

- Proposal of alternating current conservation for deriving self-loop function in a transfer function
 → Observation of self-loop function can help us
 - optimize the behavior of a high-order system.
- Implementations of circuits and measurements of self-loop functions for Sallen-Key low-pass filters
 →Theoretical concepts of stability test are verified by laboratory simulations and practical experiments.

Future of work:

• Stability test for parasitic components in transmission lines, printed circuit boards, physical layout layers

References

(1)H. Kobayashi, N. Kushita, M. Tran, K. Asami, H. San, A. Kuwana "*Analog - Mixed-Signal - RF Circuits for Complex Signal Processing*", 13th IEEE Int. Conf. ASICON2019, Chongqing, China, Nov. 2019.

(2) G. Franklin, J. Powell, A. Emami, Feedback Control of Dynamic Systems, 6th Ed., Prentice-Hall, Boston, 2010.

(3) N. Kumar, V. Mummadi, "*Stability Region Based Robust Controller Design for High-gain Boost DC-DC Converter*", IEEE Trans. Industrial Electronics, Feb. 2020.

(4) L. Fan, Z. Miao, "*Admittance-Based Stability Analysis: Bode Plots, Nyquist Diagrams or Eigenvalue Analysis*", IEEE Trans. Power Systems, Vol. 35, Issue 4, July 2020.

(5) R. Middlebrook, "*Measurement of Loop Gain in Feedback Systems*", Int. J. Electronics, Vol 38, pp. 485-512, 1975.

(6) P. Wang, S. Feng, P. Liu, N. Jiang, X. Zhang, "*Nyquist stability analysis and capacitance selection method of DC current flow controllers for meshed multi-terminal HVDC grids*", CSEE J. Power & Energy Systems, July 2020, pp. 1-13.

(7) N. Tsukiji, Y. Kobori, H. Kobayashi, "*A Study on Loop Gain Measurement Method Using Output Impedance in DC-DC Buck Converter*", IEICE Trans. Com., Vol.E101-B, No.9, pp.1940-1948, Sep. 2018.

(8) J. Wang, G. Adhikari, N. Tsukiji, H. Kobayashi, "*Analysis and Design of Operational Amplifier Stability Based on Routh-Hurwitz Stability Criterion*", IEEJ Trans. Electronics, Information and Systems, Vol. 138, No. 128, pp.1517-1528, Dec. 2018.

(9) M. Tran, A. Kuwana, H. Kobayashi, "*Derivation of Loop Gain and Stability Test for Multiple Feedback Low Pass Filter Using Deboo Integrator*", The 8th IIAE Int. Conf. IAE, Shimane, Japan, March, 2020.

(10) Q. Hu, L. Yang, F. Huang, "A 100–170MHz Fully-Differential Sallen-Key 6th-order Low-Pass Filter for Wideband Wireless Communication", IEEE Int. Conf. ICM2016, Chengdu, China, Sep. 2016.

【開催日】 2020年10月8·9日 【場所】 一(Web開催) 【論文番号】ECT-20-067

Thank you very much! ご清聴ありがとうございした。

