

2020 International Conference on Promising Electronic Technologies

Al-Quds University, Jerusalem - Palestine 16-17 December 2020

Ringing Test for Tow-Thomas Low-Pass Filters

Presented by:

PhD. Candidate. MinhTri Tran

Prof. Anna Kuwana, Prof. Haruo Kobayashi

Division of Electronics and Informatics

Gunma University – Japan

- 1. Research Background
- Characteristics of adaptive feedback networks

Outline

- 2. Analysis of Behaviors of High-order Systems
- Operating regions of high-order systems
- 3. Ringing Test for Feedback Amplifiers
- Stability test for shunt-shunt feedback amplifiers
- Stability test for unity-gain and inverting amplifiers
- 4. Ringing test for High-order Systems
- Stability test for passive and active RLC circuits
- Stability test for Tow-Thomas low-pass filters
- 5. Conclusions

Performance of a system

Performance of a device

Common types of noise:

Signal to

Electronic noise, thermal noise, intermodulation noise, cross-talk, flicker noise, thermal noise...

Ringing does the following things:

- **Causes** EMI noise,
- **Increases** current flow,
- **Decreases the performance, and**
- **Damages** the devices.

- Derivation of self-loop function based on the proposed comparison measurement
- Investigation of operating region of highorder systems
- Observation of phase margin at unity gain on the Nichols chart
- Over-damping (high delay in rising time)
- Oritical damping (max power propagation)
 Oritical damping (max power power
- → Under-damping (overshoot and ringing)

Comparison measurement

- Shunt-shunt amplifiers
- Inverting amplifiers
- Unity-gain amplifiers
- 2nd-order low-pass filters

2nd-order Tow-Thomas LPF

Transfer function

Self-loop function

$$L(\omega) = \frac{A(\omega)}{H(\omega)} - 1$$

Implemented circuit

CPET Definition of Self-loop Function

Linear system

 $V_{in}(\omega), V_{out}(\omega)$: periodic signals with angular frequency variable

Simplified model for linear systems

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

- $A(\omega)$: Numerator function
- $H(\omega)$: Transfer function
- $L(\omega)$: Self-loop function
- Polar chart → Nyquist chart
- Magnitude-frequency plot
 Angular-frequency plot

Bode plots

○ Magnitude-angular diagram → Nichols diagram

Comparison Measurement

Linear system

Model of a linear system

$$H(\boldsymbol{\omega}) = \frac{b_0(j\omega)^n + \dots + b_{n-1}(j\omega) + b_n}{a_0(j\omega)^n + \dots + a_{n-1}(j\omega) + a_n}$$

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

Sequence of steps:

- (i) Measurement of numerator function A(ω),
- (ii) Measurement of transfer function H(ω), and
- (iii) Derivation of self-loop function.

Self-loop function

$$L(\omega) = \frac{A(\omega)}{H(\omega)} - 1$$

CPET Alternating Current Conservation

Transfer function

Self-loop function

- Adaptive feedback is used to control the output source along with the decision source (DC-DC Buck converter).
- Transfer function of an adaptive feedback network is significantly different from transfer function of a linear negative feedback network.

→ Loop gain is independent of frequency variable (referent voltage, feedback voltage, and error voltage are DC voltages).

Outline

- 1. Research Background
- Characteristics of adaptive feedback networks
- 2. Analysis of Behaviors of High-order Systems
- Operating regions of high-order systems
- 3. Ringing Test for Feedback Amplifiers
- Stability test for shunt-shunt feedback amplifiers
- Stability test for unity-gain and inverting amplifiers
- 4. Ringing test for High-order Systems
- Stability test for passive and active RLC circuits
- Stability test for Tow-Thomas low-pass filters
- 5. Conclusions

Second-order transfer function: $H(\omega) = \frac{1}{1 + a_0(j\omega)^2 + a_1j\omega}$

Case	Over-damping	Critical damping	Under-damping	
Delta (Δ)	$\frac{1}{a_0} < \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 > 0$	$\frac{1}{a_0} = \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 = 0$	$\frac{1}{a_0} > \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 < 0$	
Module $ H(\omega) $	$\frac{\frac{1}{a_0}}{\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}$	$\boxed{\frac{1}{a_0} \frac{1}{\left[\omega^2 + \left(\frac{a_1}{2a_0}\right)^2\right]}} = \frac{1}{2} = -6dB$	$\frac{\frac{1}{a_0}}{\sqrt{\left(\omega - \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}\right)^2 + \left(\frac{a_1}{2a_0}\right)^2}\sqrt{\left(\omega + \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}\right)^2 + \left(\frac{a_1}{2a_0}\right)^2}}$	
Angular $\theta(\omega)$	$-\arctan\left(\frac{\omega}{\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}}\right) - \arctan\left(\frac{\omega}{\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}}\right)$	$-2 \arctan\left(\frac{2a_0\omega}{a_1}\right)$	$-\arctan\left(\frac{\omega-\sqrt{\frac{1}{a_0}-\left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)-\arctan\left(\frac{\omega+\sqrt{\frac{1}{a_0}-\left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)$	
$\omega_{cut} = \frac{a_1}{2a_0}$	$ H(\omega_{cut}) < \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) > -\frac{\pi}{2}$	$ H(\omega_{cut}) = \frac{2a_0}{a_1} \theta(\omega_{cut}) = -\frac{\pi}{2}$	$ H(\omega_{cut}) > \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) < -\frac{\pi}{2}$	

Second-order self-loop function: $L(\omega) = j\omega [a_0 j\omega + a_1]$

Case	Over-damping		Critical damping		Under-damping	
Delta (Δ)	$\Delta = a_1^2 - 4a_0 > 0$		$\Delta = a_1^2 - 4a_0 = 0$		$\Delta = a_1^2 - 4a_0 < 0$	
$ L(\omega) $	$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$	
θ(ω)	$\frac{\pi}{2}$ +	$\arctan \frac{a_0 \omega}{a_1}$	$\frac{\pi}{2}$ + arctan $\frac{a_0\omega}{a_1}$		$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$	
$\omega_{\rm l} = \frac{a_{\rm l}}{2a_{\rm o}}\sqrt{\sqrt{5}-2}$	$\left(\left L(\omega_1)\right > 1\right)$	$\pi - \theta(\omega_1) > 76.3^{\circ}$	$ L(\omega_1) = 1$	$\pi - \theta(\omega_1) = 76.3^{\circ}$	$\left L(\omega_1)\right < 1$	$\pi - \theta(\omega_1) < 76.3^{\circ}$
$\omega_2 = \frac{a_1}{2a_0}$	$\left L(\omega_2)\right > \sqrt{5}$	$\pi - \theta(\omega_2) > 63.4^{\circ}$	$\left L(\omega_2)\right = \sqrt{5}$	$\pi - \theta(\omega_2) = 63.4^{\circ}$	$\left L(\omega_2)\right < \sqrt{5}$	$\pi - \theta(\omega_2) < \frac{63.4^{\circ}}{}$
$\omega_3 = \frac{a_1}{a_0}$	$ L(\omega_3) > 4\sqrt{2}$	$\pi - \theta(\omega_3) > 45^{\circ}$	$\left L(\omega_3)\right = 4\sqrt{2}$	$\pi - \theta(\omega_3) = 45^{\circ}$	$\left L(\omega_3)\right < 4\sqrt{2}$	$\pi - \theta(\omega_3) < 45^{\circ}$

Outline

- 1. Research Background
- Characteristics of adaptive feedback networks
- 2. Analysis of Behaviors of High-order Systems
- Operating regions of high-order systems
- 3. Ringing Test for Feedback Amplifiers
- Stability test for shunt-shunt feedback amplifiers
- Stability test for unity-gain and inverting amplifiers
- 4. Ringing test for High-order Systems
- Stability test for passive and active RLC circuits
- Stability test for Tow-Thomas low-pass filters
- 5. Conclusions

Shunt-shunt Feedback Amplifier

Vin

Shunt-shunt feedback amplifier

Apply superposition at the nodes V_{π} and V_{out} , we have

$$V_{\pi}\left(\frac{1}{R_{s}} + \frac{1}{r_{\pi}} + \frac{1}{Z_{C\pi}} + \frac{1}{R_{F}} + \frac{1}{Z_{C\mu}}\right) = \frac{V_{in}}{R_{s}} + \frac{V_{out}}{Z_{C\mu}}; \quad V_{out}\left(\frac{1}{Z_{C\mu}} + \frac{1}{Z_{CCS}} + \frac{1}{R_{c}} + \frac{1}{r_{o}}\right) = V_{\pi}\left(\frac{1}{Z_{C\mu}} + \frac{1}{R_{F}} - g_{m}\right);$$

Transfer function and self-loop function

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{b_0 j\omega + b_1}{a_0 (j\omega)^2 + a_1 j\omega + 1}; \quad L(\omega) = j\omega [a_0 j\omega + a_1]$$

Where,
$$b_0 = R_L C_{GD1}; b_1 = -R_L g_{m1}; a_0 = R_S R_L (C_{GD1} C_{GS1} + C_{GD1} C_{DB1} + C_{DB1} C_{GS1});$$

 $a_1 = R_L (C_{GD1} + C_{DB1}) + R_S (C_{GS1} + C_{GD1}) + R_S R_L g_{m1} C_{GD1};$

Characteristics of Shunt-Shunt (PF" **Feedback Amplifier** OS UNI **Shunt-shunt feedback amplifier** Bode plot of transfer function Magnitude of transfer function V_{cc} 20 16 R_{C} 17 dB 12 R_{F} Magnitude (dB) 8 Vout ₩~-0 V_{in} R_s 0 -4 Q1 -8 -12 -16 -20 R_f = 1 kΩ, R_C = 10 kΩ, R_S = 950 Ω. 1 MHz 10 MHz 100 MHz 1 GHz Frequency (Hz) **Transient response** Nichols plot of self-loop function Input step signal 120mV Self-loop function Amplitude (V) 80mV 60mV 40mV 20mV 0 6 µs 12 µs 18 µs 24 µs 30 µs 36 µs 42 µs 48 µs 54 µs 94° 0 Time (s) Output step signal 3.0V **Phase** 2.5V Amplitude (V) 2.0V margin 86 1.5V 1.0V degrees 0.5V 0 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 6μ s 12μ s 18μ s 24μ s 30μ s 36μ s 42μ s 48μ s 54μ s 0 Time (s) Phase (deg)

CPETOP Amp without Miller's Capacitor

Open-loop function

$$A_{op}(\omega) = \frac{b_0 (j\omega)^3 + b_1 (j\omega)^2 + b_2 j\omega + b_3}{a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega + 1};$$

Self-loop function

$$L_{op}(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega;$$

Without frequency compensation

Small signal model of 2nd-stage

Transfer function

$$H(\omega) = \frac{b_0 j\omega + b_1}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$

Self-loop function

$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega$$

Where,
$$a_0 = R_D C_{GD}; a_1 = -R_D g_m;$$

 $b_0 = R_D R_S \Big[(C_{GD} + C_{DB}) (C_{GS} + C_{GD}) - C_{GD}^2 \Big];$
 $b_1 = \Big[R_D (C_{GD} + C_{DB}) + R_S (C_{GS} + C_{GD}) + R_D R_S g_m C_{GD} \Big];$

Op Amp with Miller's Capacitor

Open-loop function

$$A_{op}(\omega) = \frac{b_0 (j\omega)^5 + b_1 (j\omega)^4 + b_2 (j\omega)^3 + b_3 (j\omega)^2 + b_4 j\omega + b_5}{a_0 (j\omega)^6 + a_1 (j\omega)^5 + a_2 (j\omega)^4 + a_3 (j\omega)^3 + a_4 (j\omega)^2 + a_5 j\omega + 1}$$

Self-loop function

$$L_{op}(\omega) = a_0 (j\omega)^6 + a_1 (j\omega)^5 + a_2 (j\omega)^4 + a_3 (j\omega)^3 + a_4 (j\omega)^2 + a_5 j\omega_5$$

VDD

M₆

Vout

Ms

Small signal model of 2nd-stage

With Miller's capacitor and resistor

 \mathcal{M}

M₇

 $M_1 M_2$

Ma

Transfer function

Self-loop function

$$L(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega$$

Unity-Gain Amplifier with Miller's Capacitor

Unity-gain amplifier with Miller's capacitor

Simplified model

Under-damping: R1= 2 kΩ, C1 = 1 pF

Critical damping:

R1 = 3.5 kΩ, C1 = 0.2 pF

Over-damping:

R1 = $3.5 \text{ k}\Omega$, C1 = 0.8 pF

Transfer function and self-loop function

$$H(\omega) = \frac{1}{1 + \frac{1}{A(\omega)}} \approx 1; \quad L(\omega) = \frac{1}{A(\omega)};$$

Behaviors of Unity-Gain Amplifier

Model of unity gain amplifier

Bode plot of transfer function

Simulated transient response

Nichols plot of self-loop function

Inverting Amplifier with Miller's Capacitor

Inverting amplifier

Transfer function and self-loop function $H(\omega) = \frac{\frac{R_2}{R_1}}{1 + L(\omega)} \approx -\frac{R_2}{R_1}; L(\omega) = \frac{1}{A(\omega)} \left(1 + \frac{R_2}{R_1}\right);$

Simplified model

Under-damping: R3= 2 k Ω , C1 = 1 pF

Critical damping:

R3 = 3.5 kΩ, C1 = 0.2 pF

Over-damping:

Behaviors of Inverting Amplifier

Model of inverting amplifier

Bode plot of transfer function

Simulated transient response

Nichols plot of self-loop function

2020 International Conference on Promising Electronic Technologies – ICPET 2020

Outline

- 1. Research Background
- Characteristics of adaptive feedback networks
- 2. Analysis of Behaviors of High-order Systems
- Operating regions of high-order systems
- 3. Ringing Test for Feedback Amplifiers
- Stability test for shunt-shunt feedback amplifiers
- Stability test for unity-gain and inverting amplifiers
- 4. Ringing test for High-order Systems
- Stability test for passive and active RLC circuits
- Stability test for Tow-Thomas low-pass filters
- 5. Conclusions

Analysis of 2nd-Order Passive RLC LPF

Passive RLC Low-pass Filter

Derivation of self-loop function

Transfer function

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$

Self-loop function

$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega;$$

where, $a_0 = LC; a_1 = RC;$

Implemented circuit

ICPÉT

Measurement Results for 2nd-Order Passive RLC LPF

Bode plot of transfer function

Nichols plot of self-loop function

Transient responses

2020

27

I D P E T

2020 International Conference on Promising Electronic Technologies – ICPET 2020

-0.0003

-0.0002

-0.0001

0.0000

Time (s)

0.0001

12/8/2020

0.0003

0.0002

Analysis of Active 3rd-Order Ladder LPF

Passive 3rd-order ladder LPF

Active 3rd-order ladder LPF

Transfer function & self-loop function

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{a_0 (j\omega)^3 + a_1 (j\omega)^2 + a_2 j\omega + 1};$$

$$L(\omega) = j\omega \left[a_0 (j\omega)^2 + a_1 j\omega + a_2 \right]$$

where, $b_0 = L_2C_2; b_1 = R_2C_2;$ $a_0 = R_1C_1L_2C_2; a_1 = R_1C_1R_2C_2 + L_2C_2;$ $a_2 = R_1(C_1 + C_2) + R_2C_2;$

R1 = 100 Ω, R2 = 50 kΩ,

R3 = R4 = 50 k Ω , C1 = 5 nF, C2 = 10 nF, C3 = 3.18 nF, at f₀ = 100 kHz.

- **Over-damping** (R5 = 0.5 kΩ),
- Critical damping (R5 = 1 k Ω), and
- Under-damping (R5 = $2 k\Omega$).

Measurement Set Up for 3rd-Order Ladder LPF

Measurement of self-loop function

12/8/2020

I D P E T

Analysis of 2nd-Order Tow-Thomas LPF

Fully differential Tow-Thomas LPF

Single ended Tow-Thomas LPF Transfer function & self-loop function

$$H(\omega) = \frac{b_0}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$

$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega;$$

where, $b_0 = \frac{R_4 R_6}{R_1 R_5};$

$$a_0 = \frac{R_3 R_4 R_6 C_1 C_2}{R_5}; a_1 = \frac{R_3 R_4 R_6 C_2}{R_2 R_5};$$

Component parameters
GBW = 10MHz, Ao = 100000,
fo = 25kHz, C1 = 1 nF, C2 = 100 pF,
R1 = R4 = R5 = 1k\Omega, R3 = 100 k\Omega, R6 = 5 k\Omega.

Under-damping: $R2 = 10 k\Omega$,

Critical damping: $R2 = 3.5 k\Omega$,

Over-damping: $R2 = 10 k\Omega$

2020 International Conference on Promising Electronic Technologies – ICPET 2020

fo

Measurement set up for Tow-Thomas LPF

Schematic of Tow-Thomas LPF

System Under Test

Measurement set up

IÙPĔT

Measurement Results of Tow-Thomas LPF

Bode plot of transfer function

Transient response

Nichols plot of self-loop function

Over-damping:

 \rightarrow Phase margin is 95 degrees.

Critical damping:

 \rightarrow Phase margin is 77 degrees.

Under-damping:

 \rightarrow Phase margin is 40 degrees.

I(PE

Outline

- 1. Research Background
- Characteristics of adaptive feedback networks
- 2. Analysis of Behaviors of High-order Systems
- Operating regions of high-order systems
- 3. Ringing Test for Feedback Amplifiers
- Stability test for shunt-shunt feedback amplifiers
- Stability test for unity-gain and inverting amplifiers
- 4. Ringing test for High-order Systems
- Stability test for passive and active RLC circuits
- Stability test for Tow-Thomas low-pass filters

5. Conclusions

- Middlebrook's measurement of loop gain
- → Applying only in feedback systems (DC-DC converters).
- **o Replica measurement of loop gain**
- →Using two identical networks (not real measurement).
- Nyquist's stability condition
- \rightarrow Theoretical analysis for feedback systems (Lab tool).
- Nichols chart of loop gain
- \rightarrow Only used in feedback control theory (Lab tool).

Features	Comparison measurement	Alternating current conservation	Replica measurement	Middlebrook's method
Main objective	Self-loop function	Self-loop function	Loop gain	Loop gain
Transfer function accuracy	Yes	Yes	Νο	Νο
Breaking feedback loop	Νο	Yes	Yes	Yes
Operating region accuracy	Yes	Yes	Νο	Νο
Phase margin accuracy	Yes	Yes	Νο	Νο
Passive networks	Yes	Yes	Νο	No

- o Loop gain is independent of frequency variable.
- →Loop gain in adaptive feedback network is significantly different from self-loop function in linear negative feedback network.

Nichols chart is only used in MATLAB simulation.

Nichols chart isn't used widely in practical measurements (only used in control theory).

https://www.mathworks.com/help/control/ref/nichols.html

This work:

- Proposal of comparison measurement for deriving selfloop function in a transfer function
 - \rightarrow Observation of self-loop function can help us optimize the behavior of a high-order system.
- Implementation of circuit and measurements of selfloop functions for high-order networks.

→ Theoretical concepts of stability test are verified by laboratory simulations and practical experiments.

Future work:

• Stability test for parasitic components in transmission lines, printed circuit boards, physical layout layers

- [1] N. Sayyaf, M. Tavazoei, "Frequency Data-Based Procedure to Adjust Gain and Phase Margins and Guarantee the Uniqueness of Crossover Frequencies," IEEE Trans. on Industrial Electronics, vol. 67, no. 3, pp. 2176 – 2185, 2020.
- [2] B. Singh, A. Tiwari, S. Agrawal, "State Variable based Tow Thomas Biquad filter using Gm-C Universal design using 180nm CMOS Technology," Int. Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no.2, 2020.
- [4] P. Anand, B. Bhuvan, "An alternate, discrete-time approach to the analysis of continuous-time negative feedback systems," TENCON IEEE Region 10 Conference, Kochi, India, Oct. 2019.
- [5] M. Tran, A. Kuwana, H. Kobayashi, "Design of Active Inductor and Stability Test for Ladder RLC Low Pass Filter Based on Widened Superposition and Voltage Injection," The 8th IIAE Int. Conf. on Industrial Application Engineering, 2020.
- [6] M. Tran, "Damped Oscillation Noise Test for Feedback Circuit Based on Comparison Measurement Technique," 73rd System LSI Joint Seminar, Tokyo, Japan, Oct. 2019.
- [7] P. Wang, S. Feng, P. Liu, N. Jiang, X. Zhang, "Nyquist stability analysis and capacitance selection method of DC current flow controllers for meshed multi-terminal HVDC grids," CSEE Journal of Power and Energy Systems, pp. 1-13, 2020.
- [9] L. Fan, Z. Miao, "Admittance-Based Stability Analysis: Bode Plots, Nyquist Diagrams or Eigenvalue Analysis," IEEE Trans. on Power Systems, vol. 35, no. 4, pp. 3312 3315, July 2020.
- [11] M. Tran, A. Kuwana, H. Kobayashi, "*Derivation of Loop Gain and Stability Test for Multiple Feedback Low Pass Filter Using Deboo Integrator,*" The 8th IIAE Int. Conf. on Industrial Application Engineering, Shimane, Japan, March 2020.
- [12] M. Tran, Y. Sun, Y. Kobori, A. Kuwana, H. Kobayashi, "Overshoot Cancelation Based on Balanced Charge-Discharge Time Condition for Buck Converter in Mobile Applications," IEEE 13th Int. Conf. on ASIC, Chongqing, China, Oct. 2019.

- [18] M. Tran, A. Kuwana, H. Kobayashi, "*Design of Active Inductor and Stability Test for Passive RLC Low Pass Filter,*" 10th Int. Conf. on CCSEA, London, UK, July 2020.
- [19] H. Wang, X. Ping, X. Wang, "Adaptive Output Feedback Control of Nonaffine Nonlinear Time-delay Systems with Input Hysteresis Nonlinearities by Neural Network Approach," IEEE Int. Conf. on Computational Electromagnetics, 2019.
- [21] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Mathematical Model and Analysis of 4-Stage Passive RC Polyphase Filter for Low-IF Receiver,*" J. of Mech. Elect. Intel. Syst., vol. 3, no. 2, pp. 31-51, 2020.
- [24] N. Mazlan, N. Thamrin, N. Razak, "Comparison Between Ziegler-Nichols and AMIGO Tuning Techniques in Automated Steering Control System for Autonomous Vehicle," IEEE Int. Conf. on Automatic Control and Intelligent Sys. 2020.
- [25] M. Tran, A. Kuwana, H. Kobayashi, "*Derivation of Loop Gain and Stability Test for Low Pass Tow-Thomas Biquad Filter,*" 10th Int. Conf. CCSEA, London, UK, July 2020.
- [26] A. Gupta, A. Husain, A. Bhandari, "*Realization of a Continuous-Time Current-Mode Tow-Thomas-Equivalent Biquad Using Bipolar Current Mirrors,*" Innovations in Electronics and Communication Engineering, vol. 107, pp. 369-377, 2020.
- [27] M. Tran, A. Kuwana, H. Kobayashi "*Ringing Test for Negative Feedback Amplifiers,*" 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference, Canada, Nov. 2020.
- [28] R. Povoaab, R. Aryaa, A. Canelasa, F. Passosa, R. Martinsa, N. Lourencoa, N. Hortaa, "*Sub-μW Tow-Thomas based biquad filter with improved gain for biomedical applications,*" Microelectronics Journal, vol. 95, Jan. 2020.
- [30] M. Tran, A. Kuwana, H. Kobayashi, "*Ringing Test for Third-Order Ladder Low-Pass Filters*", 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, USA, Oct. 2020.

Thank you very much!

