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1. Research Background

• Characteristics of adaptive feedback networks

2. Analysis of Behaviors of High-order Systems

• Operating regions of high-order systems

3. Ringing Test for Feedback Amplifiers

• Stability test for shunt-shunt feedback amplifiers

• Stability test for unity-gain and inverting amplifiers

4. Ringing test for High-order Systems

• Stability test for passive and active RLC circuits

• Stability test for Tow-Thomas low-pass filters

5. Conclusions
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Effects of Ringing on Circuits

Ringing does the following things:

• Causes EMI noise,

• Increases current flow,

• Decreases the performance, and

• Damages the devices.
STABILITY TEST

Unstable system

Signal to 

Noise Ratio:

Performance of a devicePerformance of a system

Figure of 

Merit:
=

Signal power
SNR

Noise power
=

Output SNR

Input SNR
F

Common types of noise:

• Electronic noise, thermal noise, intermodulation noise,

cross-talk, flicker noise, thermal noise...
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Objectives of Study

• Derivation of self-loop function based on 

the proposed comparison measurement

• Investigation of operating region of high-

order systems

• Observation of phase margin at unity gain 

on the Nichols chart

à Over-damping (high delay in rising time)

à Critical damping (max power propagation)

à Under-damping (overshoot and ringing)
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Achievements of Study

Comparison measurement

• Shunt-shunt amplifiers

• Inverting amplifiers

• Unity-gain amplifiers

• 2nd-order low-pass filters 1(
)

)
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w
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Transfer function 

2nd-order Tow-Thomas LPF Implemented circuit
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Definition of Self-loop Function
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: Numerator function 

: Transfer function 

: Self-loop function 

Linear system

Input Output

( )H w
( )winV ( )woutV

oMagnitude-frequency plot

oAngular-frequency plot 

oPolar chart à Nyquist chart

oMagnitude-angular diagram à Nichols diagram

Bode plots

( ), ( )w win outV V : periodic signals 

with angular frequency variable

Simplified model for linear systems
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Comparison Measurement

Transfer function
Self-loop function
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Sequence of steps: 

(i) Measurement of numerator 

function A(ω), 

(ii) Measurement of transfer 

function H(ω), and

(iii) Derivation of self-loop 

function.
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Alternating Current Conservation
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Adaptive Feedback Network

Block diagram of a typical adaptive feedback system

Reference 
voltage

• Adaptive feedback is used to control the output source 

along with the decision source (DC-DC Buck converter). 

• Transfer function of an adaptive feedback network is 

significantly different from transfer function of a linear 

negative feedback network. 

à Loop gain is independent of frequency variable (referent 

voltage, feedback voltage, and error voltage are DC voltages).

DC voltage

DC voltage

DC voltage

DC voltage

+ Ripple voltage
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Loop Gain in Feedback Systems

BW =100 Hz GBW =10 MHz

Loop Gain

Aβ : loop gain

Transfer function 1

1
= »

+ b b
A

A
H

GF : loop gain

Transfer function
1

1
= »

+GF
G

H

G

F

+-
OutputInput

A+
-

VoutVin

b

Inverting amplifierAdaptive feedback system

Nichols plot of loop gain Gain reduction
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1. Research Background

• Characteristics of adaptive feedback networks

2. Analysis of Behaviors of High-order Systems

• Operating regions of high-order systems

3. Ringing Test for Feedback Amplifiers

• Stability test for shunt-shunt feedback amplifiers

• Stability test for unity-gain and inverting amplifiers

4. Ringing test for High-order Systems

• Stability test for passive and active RLC circuits

• Stability test for Tow-Thomas low-pass filters

5. Conclusions
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2nd-Order Transfer Function
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2nd-Order Self-loop Function

Case Over-damping Critical damping Under-damping
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Operating Regions of 2nd-Order 

System

98o

103.7o

128o

Nichols plot of self-loop functionBode plot of transfer function

Transient response
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1. Research Background

• Characteristics of adaptive feedback networks

2. Analysis of Behaviors of High-order Systems

• Operating regions of high-order systems

3. Ringing Test for Feedback Amplifiers

• Stability test for shunt-shunt feedback amplifiers

• Stability test for unity-gain and inverting amplifiers

4. Ringing test for High-order Systems

• Stability test for passive and active RLC circuits

• Stability test for Tow-Thomas low-pass filters

5. Conclusions
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Shunt-shunt Feedback Amplifier
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Characteristics of Shunt-Shunt 

Feedback Amplifier

Shunt-shunt feedback amplifier

Rf = 1 kΩ, RC = 10 kΩ, RS = 950 Ω.

Nichols plot of self-loop function

Bode plot of transfer function

Transient response

94o

Phase 

margin 86

degrees

17 dB
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Op Amp without Miller’s Capacitor

Without frequency compensation

Small signal model of 2nd-stage

Transfer function
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Unity-Gain Amplifier without 

Miller’s Capacitor

Bode plot of transfer function

Nichols plot of self-loop function

Unity-Gain Amplifier 

Transient response 

167o

Phase margin = 13

degrees

15 

dB



12/8/20202020 International Conference on Promising Electronic Technologies – ICPET 202020

Op Amp with Miller’s Capacitor

With Miller’s capacitor and resistor
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Unity-Gain Amplifier with 

Miller’s Capacitor

Unity-gain amplifier with Miller’s capacitor

Under-damping:

R1= 2 kΩ, C1 = 1 pF 

Critical damping:

R1 = 3.5 kΩ, C1 = 0.2 pF 

Over-damping:

R1 = 3.5 kΩ, C1 = 0.8 pF
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1 1
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L
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H

Transfer function and self-loop function

Simplified model
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Behaviors of Unity-Gain Amplifier

150o

90o

79o

Nichols plot of self-loop functionBode plot of transfer function

Simulated transient responseModel of unity gain amplifier

-9 dB

5 dB

-15dB

PM 

30o

PM 90o

PM 

101o
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Inverting Amplifier with Miller’s 

Capacitor

Inverting amplifier

Under-damping:

R3= 2 kΩ, C1 = 1 pF 

Critical damping:

R3 = 3.5 kΩ, C1 = 0.2 pF 

Over-damping:

R3 = 3.5 kΩ, C1 = 0.8 pF( )
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Transfer function and self-loop function

Simplified model
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Behaviors of Inverting Amplifier 

139o

111o
106o

Nichols plot of self-loop functionBode plot of transfer function

Simulated transient responseModel of inverting amplifier

20dB

4dB

8dB

PM 

41o

PM 

69o
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74o
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1. Research Background

• Characteristics of adaptive feedback networks

2. Analysis of Behaviors of High-order Systems

• Operating regions of high-order systems

3. Ringing Test for Feedback Amplifiers

• Stability test for shunt-shunt feedback amplifiers

• Stability test for unity-gain and inverting amplifiers

4. Ringing test for High-order Systems

• Stability test for passive and active RLC circuits

• Stability test for Tow-Thomas low-pass filters

5. Conclusions
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Analysis of 2nd-Order Passive 

RLC LPF

Passive RLC Low-pass Filter
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Measurement Results for 

2nd-Order Passive RLC LPF
Transient responses

94o 107o
122o

Nichols plot of self-loop function

Bode plot of transfer function

2dB

-10dB

0dB

PM 

58o

PM 

86o

PM 

73o



12/8/20202020 International Conference on Promising Electronic Technologies – ICPET 202028

Analysis of Active 3rd-Order 

Ladder LPF
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Passive 3rd-order ladder LPF Transfer function & self-loop function

where, 

Active 3rd-order ladder LPF

R1 = 100 Ω, R2 = 50 kΩ, 

R3 = R4 = 50 kΩ, C1 = 5 nF, C2 = 10 

nF, C3 = 3.18 nF, at f0 = 100 kHz. 

• Over-damping (R5 = 0.5 kΩ), 

• Critical damping (R5 = 1 kΩ), and

• Under-damping (R5 = 2 kΩ).General impedance converter
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Measurement Set Up for 

3rd-Order Ladder LPF

Balun transformer

(10 mH inductance)

Measurement of self-loop function

System under test
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Measurement Results of 

3rd-order Ladder LPF

Over-damping:

àPhase margin is 77 degrees.

Critical damping:

àPhase margin is 70 degrees.

Under-damping: 

àPhase margin is 64 degrees.

Transient response

Bode plot of transfer function Nichols plot of self-loop function

103o
110o

116o

1 dB

-6 dB

-3dB

PM 

64o

PM 

77o
PM 

70o
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Analysis of 2nd-Order 

Tow-Thomas LPF
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where, 

Fully differential Tow-Thomas LPF

GBW = 10MHz, Ao = 100000, 

fo = 25kHz, C1 =1 nF, C2 = 100 pF, 

R1= R4 = R5 = 1kΩ, R3 = 100 kΩ, R6 = 5 kΩ. 

Under-damping: R2 = 10 kΩ, 

Critical damping: R2 = 3.5 kΩ, 

Over-damping: R2 = 10 kΩ

Component parameters
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Measurement set up for 

Tow-Thomas LPF

Schematic of Tow-Thomas LPF

System Under Test

Measurement set up
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Measurement Results of 

Tow-Thomas LPF

Over-damping:

àPhase margin is 95 degrees.

Critical damping:

àPhase margin is 77 degrees.

Under-damping: 

àPhase margin is 40 degrees.

Transient response

Bode plot of transfer function Nichols plot of self-loop function

85o 103o 140o

15 dB

-10 dB

0 dB PM

40o

PM 

95o

PM

77o
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1. Research Background

• Characteristics of adaptive feedback networks

2. Analysis of Behaviors of High-order Systems

• Operating regions of high-order systems

3. Ringing Test for Feedback Amplifiers

• Stability test for shunt-shunt feedback amplifiers

• Stability test for unity-gain and inverting amplifiers

4. Ringing test for High-order Systems

• Stability test for passive and active RLC circuits

• Stability test for Tow-Thomas low-pass filters

5. Conclusions
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Limitations of Existing Methods

o Middlebrook’s measurement of loop gain

àApplying only in feedback systems (DC-DC converters).

o Replica measurement of loop gain

àUsing two identical networks (not real measurement).

o Nyquist’s stability condition

à Theoretical analysis for feedback systems (Lab tool).

o Nichols chart of loop gain

à Only used in feedback control theory (Lab tool).
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Merits of Self-loop Function

Features
Comparison 

measurement

Alternating 

current 

conservation

Replica 

measurement

Middlebrook’s 

method

Main objective
Self-loop 

function

Self-loop 

function
Loop gain Loop gain

Transfer function 

accuracy
Yes Yes No No

Breaking

feedback loop
No Yes Yes Yes

Operating region 

accuracy
Yes Yes No No

Phase margin 

accuracy
Yes Yes No No

Passive

networks
Yes Yes No No
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Limitations of Loop Gain on 

Nichols Chart

¢ Loop gain is independent of frequency variable.

àLoop gain in adaptive feedback network is significantly 

different from self-loop function in linear negative 

feedback network.

https://www.mathworks.com/help/control/ref/nichols.html

Network Analyzer

Nichols chart is only used 

in MATLAB simulation.

Nichols chart isn’t used widely in 

practical measurements 

(only used in control theory).

(Technology limitations)
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Conclusions

This work:

¢ Proposal of comparison measurement for deriving self-

loop function in a transfer function

à Observation of self-loop function can help us  

optimize the behavior of a high-order system.

¢ Implementation of circuit and measurements of self-

loop functions for high-order networks.

à Theoretical concepts of stability test are verified by 

laboratory simulations and practical experiments.

Future work:  

¢ Stability test for parasitic components in transmission 

lines, printed circuit boards, physical layout layers
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