IEEE 15th International Conference on Solid-State and Integrated Circuit Technology

Session B2 Analog Circuit 2

Kunming, China (Nov. 4, 2020)

Invited Paper

JAPA

Analog/Mixed-Signal Circuit Testing Technologies in IoT Era <u>Haruo Kobayashi</u>

A. Kuwana, J. Wei, Y. Zhao, S. Katayama

T. M. Tri, M. Hirai, T. Nakatani, K. Hatayama

Gunma University

K. Sato, T. Ishida, T. Okamoto, T. Ichikawa *Rohm Semiconductor*

Gunma University Kobayashi Lab

Contents

- Research Background
- Analog/Mixed-Signal Circuit Testing
- Operational Amplifier Testing
- ADC Linearity Testing
- Analog Signal Generation with AWG
- Waveform Sampling Technique
- Timing Testing
- Challenges and Conclusion

Contents

Research Background

- Analog/Mixed-Signal Circuit Testing
- Operational Amplifier Testing
- ΔΣ ADC Linearity Testing
- Analog Signal Generation with AWG
- Waveform Sampling Technique
- Timing Testing
- Challenges and Conclusion

Hot Applications in IC Industry

• Automotive application ppm (parts per million) \rightarrow ppb (parts per billion) low quality \rightarrow out of business

loT systems

A lot of sensors, interface analog circuits

High reliability, Low cost system

High quality, low cost testing of LSI is important !

Test and Measurement are different

LSI test and measurement

- Production Test :
 - Decision of "Go" or "No Go"

Today's focus

LSI testing \rightarrow manufacturing engineering.

Measurement / Characterization

Accurate performance evaluation of circuit

IC Testing Technologies

- Analog/mixed-signal portions continue to be difficult part of SoC test.
 - \rightarrow most troublesome parts
- LSI testing technology reduces cost and improves quality simultaneously.
- Additional benefits of testing:
- Improvement of
 - Yield
 - Reliability
 - Security
 - Diagnosis

Contents

Management Strategy

Strategy 1 :

Use low cost ATE and develop analog BIST/BOST to make testing cost lower.

• Strategy 2 :

Use high-end mixed-signal ATE as well as its associated services & know how. Fast time-to-market & no BIST

can make profits much more than testing cost.

ATE: Automatic Test Equipment BIST: Built-In Self-Test, BOST: Built-Out Self-Test

Low Cost Testing

A penny saved is a penny earned.

Digital ATE

 No analog option such as Arbitrary Waveform Generator: AWG

- Input/output are mainly digital.
- Short testing time
- Multi-site testing
- Minimum or no chip area penalty for BIST
- Extensive usage of BOST

Sine Wave Generation with Digital ATE

 M. Kawabata, K. Asami, S. Shibuya, T. Yanagida, H. Kobayashi, "Low-Distortion Signal Generation for Analog/Mixed-Signal Circuit Testing Using Digital ATE", The First International Test Conference in Asia, Taipei, Taiwan (Sept. 2017)

Hot Topics in Analog/Mixed-Signal Circuit Testing

- Analog fault model
- Analog fault simulation
- Analog test coverage
- Defect-based analog test

Analog IC

Very difficult,

but automotive industry strongly demands

Analog BIST

- BIST for digital : Successful
 BIST for analog : Not very successful
 Challenging research

Analog: parametric fault as well as fatal fault.

Prof. A. Chatterjee Specification-based Test ↔ Alternative Test ↔ Defect-based Test

In many cases

- Analog BIST depends on circuit.
- No general method like scan path in digital.
- One BIST, for one parameter testing

Cooperation of Analog BIST and ATE

Output signals from SoC can be repetitive by controlling all inputs to SOC with ATE

- \rightarrow No need for T/H circuit in front of SAR ADC
- → Wideband signal testing is possible

[2] T. Komuro, N. Hayasaka, H. Kobayashi, H. Sakayori,

"A Practical BIST Circuit for Analog Portion in Deep Sub-Micron CMOS System LSI", International Symposium on Circuits and Systems (ISCAS) (May.2005).

RF / High-Speed IO / Power Circuit Testing

- RF / HSIO / Power circuit testing is different from each other as well as analog testing technology.
- These are also challenging areas.
- Power supply circuit test example:
- Power supply circuit stability test without breaking the loop

[3] N. Tsukiji, Y. Kobori, H. Kobayashi,

"A Study on Loop Gain Measurement Method Using Output Impedance in DC-DC Buck Converter ", IEICE Trans. Communications, (Sep. 2018). FRA (Frequency Response Analyzer)

Robust Design and Testing

Robust design makes its testing difficult.

- Feedback suppresses parameter variation effects.
- Self-calibration and redundancy hide defects in DUT.
- Secure IC is difficult to test.

[4] T. Yagi, H. Kobayashi, Y. Tan, S. Ito, S. Uemori, N. Takai, T. J. Yamaguchi, "Production Test Consideration for Mixed-Signal IC with Background Calibration", IEEJ Trans. Electrical and Electronic Engineering (Nov. 2010).

Trojan

Redundancy SAR ADC Design Example

[5] Y. Kobayashi, H. Kobayashi, et. al.,

"Redundant SAR ADC Algorithms for Reliability Based on Number Theory", First IEEE International Workshop on Automotive Reliability & Test- ART Workshop (Nov. 2016)
[6] T. Ogawa, H. Kobayashi, "SAR ADC That is Configurable to Optimize Yield," IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, Malaysia (Dec. 2010). 16/55

ATE for Mixed-Signal IC Testing

- Analog part of ATE is costly for development.
- Analog BIST is also beneficial for mixed-signal ATE manufacturer
- ATE must be designed with today's technology for tomorrow's higher performance chip testing.

[7] R. Yi, M. Wu, K. Asami, H. Kobayashi, et. al.,"Digital Compensation for Timing Mismatches in Interleaved ADCs",IEEE 22nd Asian Test Symposium, Yilan, Taiwan, (Nov. 2013)

Contents

Research Background Analog/Mixed-Signal Circuit Testing Operational Amplifier Testing ADC Linearity Testing Analog Signal Generation with AWG Waveform Sampling Technique Timing Testing Challenges and Conclusion

IoT System and OP amp

 OP amp with smaller than µV-order offset is a key component of IoT system

Its guarantee at production test

µV-order Voltage Measurement

- \blacktriangleright µV-order OP amp offset voltage testing in short time at low cost.
- DC-AC conversion
 - - No influence by DC noise, drift, thermal effects
 - Applicable to multi-site testing

 [8] Y. Sasaki,, T. Nakatani, H. Kobayashi, et. al., "Accurate and Fast Testing Technique of Operational Amplifier DC Offset Voltage in μV-order by DC-AC Conversion", 3rd International Test Conference in Asia (Sept. 2019).

OP amp test with Null Method

Null Method Circuit

Source : Analog Dialogue Vol 45 Apr.2011 Analog Devices

Accurate but slow !

Experiment & Simulation Verification

 Optimization of phase compensation constants C₁=1nF, C₂=0.1µF

Our prototype

- Null Circuit : Change of signal application point depending on the measurement item
- Switching C₁ and C₂ depending on the measurement item

Settling time reduction $\rightarrow = 1/10$

Null method \rightarrow Production testing

[9] R. Aoki, S. Katayama, Y. Sasaki, K. Machida, T. Nakatani, J. Wang, A. Kuwana, K. Hatayama, H. Kobayashi, K. Sato, T. Ishida, T. Okamoto, T. Ichikawa,
"Evaluation of Null Method for Operational Amplifier Short-Time Testing",
13th IEEE International Conference on ASIC, Chongqing, China (Oct. 2019)

Contents

Research Background Analog/Mixed-Signal Circuit Testing **Operational Amplifier Testing** ADC Linearity Testing Analog Signal Generation with AWG Waveform Sampling Technique Timing Testing

Challenges and Conclusion

ADC Testing (DC Linearity)

- DC linearity test is the most important in many cases of ADC under test.
 - Precise ramp generation is challenging.
 - High resolution ADC in long testing time
- DC testing time is proportional to
 <u>number of codes</u> <u>sampling frequency</u>
 <u>large</u> <u>slow</u>

ADC Testing (AC Performance)

- ADC AC performance testing
 - Sampling clock jitter
 - High frequency input signal
- We have to build low clock jitter system and apply high frequency input signal.
 No alternative method so far.

ΔΣADC INL Test

Test Time will be 685[h]. Is it acceptable?

Proposed ΔΣADC INL Test Method

 [10] J.-L. Wei, K. Sato, H. Kobayashi, et. al., "High-Resolution Low-Sampling-Rate ΔΣADC Linearity Short-Time Testing Algorithm", 13th IEEE ASICON, Chongqing, China (Oct. 2019) 28/55

Proposed

 $TestTime = 34[sec](2^{20}point)$

DFT for SAR ADC Linearity

A high-resolution, low-sampling rate ADC requires a long test time for its linearity.

Shorten SAR ADC linearity test time.

For a 12-bit SAR ADC, its linearity test time $\rightarrow 1/4$

DFT: Design for Testability

[11] T. Ogawa, H. Kobayashi, et. al., "Design for Testability That Reduces Linearity Testing Time of SAR ADCs", IEICE Trans. Electronics (June 2011).

Our SAR ADC TSMC 180nm 1.2mmx1.2mm

Analog Signal Generation for ADC Histogram Test

ADC Histogram Test with Multi-tone

[12] S. Uemori, H. Kobayashi, et. al., "ADC Linearity Test Signal Generation Algorithm", IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, Malaysia (Dec. 2010)

Architecture for Generating Proposed Test Signal

- DSP program : Multi-tone sine wave
- Analog filter : Harmonics removal

• Histogram for the middle of ADC input range can be high. ADC linearity test time $\rightarrow 1/2$ 32/55

As a result ...

Contents

Research Background Analog/Mixed-Signal Circuit Testing Operational Amplifier Testing • $\Delta\Sigma$ ADC Linearity Testing Analog Signal Generation with AWG Waveform Sampling Technique Timing Testing Challenges and Conclusion

Signal Generation for Analog Circuit Test

Problem with Conventional Method

AWG: Arbitrary Waveform Generator

Low-Distortion Sine Wave Generation

- Low-distortion sine-wave generation using Arbitrary Waveform Generator (AWG)
- Compensation of AWG nonlinearity by digital pre-distortion
- ADC test signal

[13] F. Abe, Y. Kobayashi, K. Sawada, K. Kato, O. Kobayashi, H. Kobayashi, "Low-Distortion Signal Generation for ADC Testing," IEEE International Test Conference (Oct. 2014).

Conventional signal spectrum

Low IMD3 2-Tone Signal Generation with AWG for Communication Application ADC Testing

IMD: Intermodulation Distortion

[14] K. Kato, H. Kobayashi, et. al.,

"Two-Tone Signal Generation for Communication Application ADC Testing", The 21st IEEE Asian Test Symposium, Niigata, Japan (Nov. 2012).

Two-tone Curve Fitting Algorithm for Communication Application ADC Testing

37/55

Residue: Noise, Distortion

[15] Y. Motoki, H. Sugawara, H. Kobayashi, et. al.,"Multi-Tone Curve Fitting Algorithms for Communication Application ADC Testing", Electronics and Communication in Japan: Part 2, Wiley Periodicals Inc. (2003).

Complex Multi-Bandpass ΔΣ Modulator for I-Q Signal Generation ● Generation of high quality analog I-Q signals ● Testing of communication application ICs ● Digital rich (Suitable to the realization with nano CMOS → Low cost) ΔΣ modulation Complex signal processing

[16] M. Murakami, H. Kobayashi, et. al.,

"I-Q Signal Generation Techniques for Communication IC Testing and ATE Systems", IEEE International Test Conference, Fort Worth, TX (Nov. 2016).

Contents

Waveform Sampling Technology

- Waveform sampling is important for analog signal test.
- Many issues for high performance sampling circuit
 - Noise, Distortion
 - Bandwidth
 - Jitter, Aperture time
 - Sampling clock rate
 - Power

Open-loop S/H circuit: Switch and Capacitor

Residue Sampling Circuit

- Proactive usage of aliasing by waveform sampling
 Multiple low note compliant size vite
 - Multiple low-rate sampling circuits → High-frequency waveform sampling

Complex Re1 fres1 Sampling FFT **Hilbert Filter** Power circuit $Acos(2\pi f_{in}t + \theta)$ Im1 spectrum $\cos(2\pi f_{in}t)$ RC Sampling f_{s1} frequency Polyphase Filter 1 in Complex Re2 (Unknown) Sampling f_{res2} Estimate Remainder $Asin(2\pi f_{in}t+\theta)$ FFT circuit Power theorem fin Im2 Generate spectrum in-phase signal I f_{s2} quadrature signal Q Complex Re3 f res3 Sampling FFT Power circuit Im3 spectrum **j** s3 Residue frequency Sampling frequency is relatively prime

[17] Y. Abe, S. Katayama, C. Li, A. Kuwana, H. Kobayashi,

"Frequency Estimation Sampling Circuit Using Analog Hilbert Filter and Residue Number System", 13th IEEE International Conference on ASIC, Chongqing, China (Oct. 2019). 41/55

Equivalent-Time Sampling in Testing

Production Test :

Input signal is controllable

Waveform reconstruction of repetitive signal

Sampling oscilloscope 42/55

Measurement : Input signal is unknown

Waveform Missing Phenomena

Toothless waveform appears

Waveform Missing Conditions

Sampling points move little A Requires long time

Waveform Sampling Condition

[18] Y. Sasaki, Y. Zhao, A. Kuwana, H. Kobayashi,

"Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System" 27th IEEE Asian Test Symposium, Hefei, Anhui, China (Oct. 2018)

Proposed Golden Ratio Sampling

Sampling points disperse uniformly through measurement

Golden Ratio is Everywhere !

The most beautiful ratio

Contents

Research Background Analog/Mixed-Signal Circuit Testing Operational Amplifier Testing ADC Linearity Testing Analog Signal Generation with AWG Waveform Sampling Technique Timing Testing Challenges and Conclusion

Time-to-Digital Converter (TDC)

[19] Y. Ozawa, H. Kobayashi, et. al.,

"SAR TDC Architecture with Self-Calibration Employing Trigger Circuit," The 26th IEEE Asian Test Symposium, Taipei, Taiwan (Nov. 2017)

TDC BOSTs for Timing Signal Testing

Single-bit $\Delta\Sigma$ TDC with analog FPGA

Flash-type TDC with analog FPGA

Multi-bit $\Delta\Sigma$ TDC with analog FPGA

Flash-type TDC with digital FPGA

BOST: Built-Out Self-Test

[20] T. Chujo, H. Kobayashi, et. al., "Timing Measurement BOST With Multi-bit Delta-Sigma TDC", 20th IEEE International Mixed-Signal Testing Workshop, Paris, France (June, 2015).

Phase Noise Test with ΔΣ TDC

[21] Y. Osawa, D. Hirabayashi, N. Harigai, H. Kobayashi, K. Niitsu, O. Kobayashi, "Phase Noise Measurement Techniques Using Delta-Sigma TDC", IEEE International Mixed-Signals, Sensors and Systems Test Workshop, Porto Alegre, Brazil (Sept. 2014).

On-Chip Jitter Measurement Circuit

 [22] K. Niitsu, M. Sakurai, N. Harigai, T. Yamaguchi, H. Kobayashi,
 "CMOS Circuits to Measure Timing Jitter Using a Self-Referenced Clock and a Cascaded Time Difference Amplifier with Duty-Cycle Compensation," IEEE Journal of Solid-State Circuits, (Nov. 2012)

Contents

Research Background Analog/Mixed-Signal Circuit Testing Operational Amplifier Testing ADC Linearity Testing Analog Signal Generation with AWG Waveform Sampling Technique Timing Testing Challenges and Conclusion

Challenges of Analog Testing

- Analog part testing is important for mixed-signal SOC cost reduction.
- Cost is the most important criterion.
- Its research is not easy.
- Analog BIST technique progress may be slow but it is steady.
- Solve the problems one by one.
 No general or systematic method
- Should be practical.
- Use engineering sense, as well as science.

愚公移山

Future Perspective

- Use all aspects of technologies
 - Circuit technique
 - Cooperation among BIST, BOST & ATE as well as software & network
 - Signal processing algorithm
 - Use resources in SOC

such as μP core, memory, ADC/DAC

There is no science without measurement.

There is no production without test

No royal road to analog testing

Aristotelēs 「学問無王道」

Acknowledgements

Special thanks to all of Kobayashi Lab members and research collaborators who have contributed the research results presented here