Efficient ADC Testing Condition with Histogram Method

Yujie Zhao, Anna Kuwana, Shuhei Yamamoto, Yuto Sasaki, Haruo Kobayashi, Takayuki Nakatani, Kazumi Hatayama
Keno Sato, Takashi Ishida, Toshiyuki Okamoto, Tamotsu Ichikawa

Division of Electronics and Informatics
Gunma University
ROHM Semiconductor
Outline

• Objective
• ADC Test with Histogram Method
• Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram and Waveform Missing
 ➢ Metallic Ratio and Prime Number Ratio
• Conclusion
Outline

• Objective
• ADC Test with Histogram Method
• Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram and Waveform Missing
 ➢ Metallic Ratio and Prime Number Ratio
• Conclusion
IoT (Internet of Things)

The application of digital signal and analog signal conversion is very extensive.

- Analog signal (sound, light)
- Digital signal (Binary number)

High quality & Low cost test is required
Research Objective & Approach

Analog-to-Digital Converter (ADC) Linearity Test

Test cost is proportional to test time

the low-sampling-rate high-resolution ADC

- low-speed sampling
- high-resolution
 take a long time

This Work

Increasing the sampling efficiency

Propose “short-time” Relationship Between Input Frequency and Sampling Frequency
Outline

- Objective
- ADC Test with Histogram Method
- Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 - Sine Wave Histogram and Waveform Missing
 - Metallic Ratio and Prime Number Ratio
- Conclusion
Histogram method (Ramp wave input)

- ADC output histograms for all bins are equal if ADC is perfectly linear
- Highly linear ramp signal generation is difficult
Conventional Linearity Testing 2

Histogram method (Single sine wave input)

- The number of samples is small around the middle of output codes
- High accuracy sine wave can be generated using an analog filter
DNL & INL

- Important testing for ADCs

DNL : Difference between an actual step width and the ideal value

INL : Deviation from ideal conversion line

\[INL(k) = \sum_{i=1}^{k} DNL(i) \]
Outline

• Objective
• ADC Test with Histogram Method
• Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram and Waveform Missing
 ➢ Metallic Ratio and Prime Number Ratio
• Conclusion
Sine Wave Histogram

The sampled histogram is compared with the PDF. The histogram is measured, DNL and INL are calculated.

Probability Distribution Function

\[p(v) = \frac{1}{\pi \sqrt{A^2 - v^2}} \]

Repetitive waveform sampled with asynchronous

Compose a 1-period waveform
A large amount of data is required to reproduce the waveform. Test time: long.
\[f_{CLK} \gg f_{sig} \]

\[f_{CLK} \approx \frac{1}{\alpha} f_{sig} \]

\(\alpha = 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \ldots, \frac{1}{6}, \ldots \)

Special ratio \(T_{CLK} \) and \(T_{sig} \), \(f_{CLK} \) and \(f_{sig} \)

\[f_{CLK} \approx f_{sig} \]

Yuto Sasaki, Yujie Zhao, Anna Kuwana and Haruo Kobayashi, "Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System", 27th IEEE Asian Test Symposium, Hefei, Anhui, China (Oct. 2018)
Waveform Missing

Normal situation

Waveform Missing
Golden Ratio

Golden Ratio: \(\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1.618033988749895 = \varphi \)

The most beautiful ratio
Golden Ratio

Golden ratio φ

$$f_{CLK} = \varphi \times f_{sig}$$

$\varphi = 1.6180339887…$
Outline

• Objective
• ADC Test with Histogram Method

• Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram and Waveform Missing
 ➢ Metallic Ratio and Prime Number Ratio

• Conclusion
Metallic ratio

Golden Ratio:

\[
\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1.618033988749895 = \varphi
\]

<table>
<thead>
<tr>
<th>n</th>
<th>Decimal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(\frac{1 + \sqrt{5}}{2})</td>
<td>1.6180339887… Golden ratio (\varphi)</td>
</tr>
<tr>
<td>2</td>
<td>(1 + \sqrt{2})</td>
<td>2.4142135623… Silver ratio</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{3 + \sqrt{13}}{2})</td>
<td>3.3027756377… Bronze ratio</td>
</tr>
<tr>
<td>4</td>
<td>(2 + \sqrt{5})</td>
<td>4.2360679774…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>(\frac{n + \sqrt{n^2 + 4}}{2})</td>
<td></td>
</tr>
</tbody>
</table>
Histogram of Saw wave

Total number of samples is M and ADC resolution (the number of the histogram) is N.

Ideal value $h_i(k) = \frac{M}{N}$, $k = 1,2,3,\ldots,N$

Error $e(k) = \frac{N \cdot h(k)}{M} - 1$
ADC Resolution 3Bit N = 8, Increase M

Root-Mean-Square of the errors between the actual and ideal histograms:

\[RMS = \sqrt{\frac{\sum (e(k))^2}{N}} \]
RMS between the actual and ideal

Total number of samples $M = 2048$, Increase resolution N. Compare RATIO
Most of the RMS results are not as good as Metallic ratio.

Total number of samples $M = 2048$, Increase resolution N. Compare RATIO.
Therefore, we calculated the RMS within a certain range (1~4) to find a good ratio.
Outline

• Objective
• ADC Test with Histogram Method
• Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram
 ➢ Random Sampling and Waveform Missing
 ➢ Metallic Ratio and Prime Number Ratio
• Conclusion
Conclusion

Golden ratio sampling
Efficiency: Highest
Sampling frequency: low

Metallic ratio sampling
Efficiency: Good
Sampling frequency: High

Prime number ratio sampling
Efficiency: Not Good
Sampling frequency: High

next issue

- Find a ratio that is more efficient and has a smaller RMS like the golden ratio