

Analog Circuits 1

23, Oct. 2020 14:45 - 15:00

Low Power Loss IGBT Driver Circuit Using Current Drive

Yudai Abe, Akio Iwabuchi Jun-ichi Matsuda, Anna Kuwana Takashi Ida, Yukiko Shibasaki Haruo Kobayashi

Gunma University Sanken Electric Co. Ltd.

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Conclusion and Challenges

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Conclusion and Challenges

Research Background

IGBTs have advantages of both MOSFETs and bipolar transistors

Used in wide range of applications as power semiconductor devices

Development of IGBT and its driver circuit is important

IGBT and Driver Circuit

IGBT (Insulated Gate Bipolar Transistor)

Input part is **MOSFET** Output part is bipolar transistor

Advantages

- Fast operating speed
- Large current amplification factor (~1.2kA)
- High withstand voltage (~3.3kV)

Large gate capacitance Driver circuit is difficult

Objective

IGBT circuit

- Parasitic capacitance and tail current cause switching loss
 - Parasitic inductance causes
 excessive overshoot

Reduction of switching loss and excessive overshoot by current drive control of IGBT

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Conclusion and Challenges

Voltage-Driven IGBT Evaluation Circuit (1/2)

Voltage-Driven IGBT Evaluation Circuit (2/2)

Overshoot and Switching Loss during Turn-off

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Conclusion and Challenges

Current Gate Driver Circuit (1/2)

Current Gate Driver Circuit (2/2)

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Conclusion and Challenges

IGBT Turn-off Characteristics

Control of Gate Voltage by Gate Current (Step1)

Step1

V_g : Saturation voltage to Miller voltage

No effects on switching loss and overshoot

Control of Gate Voltage by Gate Current (Step2)

Step2

 V_g : Miller period of IGBT

Trade-off between switching loss and slew rate

Switching loss can be reduced

Control of Gate Voltage by Gate Current (Step3)

Step3

V_g : Miller voltage to threshold voltage

Trade-off between switching loss and overshoot

Control of Gate Voltage by Gate Current (Step4)

Step4

 V_g : Threshold voltage to $\boldsymbol{0}$

I_g : Uncontrollable due to I-V characteristics of MOSFETs

No effects on switching loss and overshoot

Comparison with Voltage Drive

Switching Loss : -30%, Overshoot : -28%

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Conclusion and Challenges

Conclusion

- Proposal of current drive circuit to control gate voltage of IGBT
- Current drive circuit draws different value of current at each 4-step operating region
- Simulation verification: During turn-off, reduction of switching loss (-30%), overshoot (-28%) compared to conventional voltage drive

Challenges

- Improve the current drive circuit
 - Adapt to change in supply voltage during turn-off and supply charge during turn-on
 - Current drive will simplify the circuit to adapt to various changes

Thank you for your attention

.....