# Digital-to-Analog Converter Architectures Based on Polygonal and Prime Numbers 

Gunma University : Yuanyang Du, Xueyan Bai, Manato Hirai,

Shuhei Yamamoto, Anna Kuwana, Haruo Kobayashi
Oyama National College : Kazuyoshi Kubo

## Research Objective

- Interesting properties of integers $\downarrow$

- Possibility of new configurations of DAC



## Outline

- Research Background
- Triangular Number DAC
- Polygonal number DAC
- Prime number DAC
- Summary


## Outline

- Research Background
- Triangular Number DAC
- Polygonal Number DAC
- Prime Number DAC
- Summary


## Importance of ADC / DAC

- Rapid development of digital electronics technology
- A natural signal is analog



## DACs are Everywhere!



Communication equipment


Electronic measuring instrument


Audio systems

## Integer Theory and Electronic Circuit Design

Many interesting properties of Integers
Currently
No Link

Electronic circuit designs

Our research here makes their links !


Integer theory is the queen of Mathematics

## Outline

- Research Background
- Triangular Number DAC
- Polygonal Number DAC
- Prime Number DAC
- Summary


## What is Triangular Number ?

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ..n(n+1)/2

|  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  | 2 |  | 3 |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 4 |  |  | 5 |  | 6 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 7 |  |  | 8 |  | 9 |  |  | 10 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 11 |  | 1 |  |  | 13 |  | 1 |  |  | 15 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 16 |  | 1 |  |  | 18 |  | 19 |  |  | 20 |  | 21 |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 22 |  | 23 |  | 2 |  |  | 25 |  | 2 |  |  | 27 |  | 28 |  |  |  |  |  |  |
|  |  |  |  |  | 29 |  | 30 |  | 3 |  |  | 32 |  | 33 |  |  | 34 |  | 35 |  | 36 |  |  |  |  |  |
|  |  |  |  | 37 |  | 38 |  | 39 |  | 4 |  |  | 41 |  | 4 |  |  | 43 |  | 44 |  | 45 |  |  |  |  |
|  |  |  | 46 |  | 47 |  | 48 |  | 4 |  |  | 50 |  | 51 |  |  | 52 |  | 53 |  | 54 |  | 55 |  |  |  |
|  |  | 56 |  | 57 |  | 58 |  | 58 |  | 6 |  |  | 61 |  | 6 | 2 |  | 63 |  | 64 |  | 65 |  | 66 |  |  |
|  | 67 |  | 68 |  | 69 |  | 70 |  | 7 |  |  | 72 |  | 73 |  |  | 74 |  | 75 |  | 76 |  | 77 |  | 78 |  |
| 79 |  | 80 |  | 81 |  | 82 |  | 83 |  | 8 |  |  | 85 |  | 8 | 8 |  | 87 |  | 88 |  | 89 |  | 90 |  | 91 |

## Theory of Trigonometric Numbers

## Any natural number

- expressed by

Sum of 3 triangular numbers

| 1: 1 | 16: | 1+15 |
| :---: | :---: | :---: |
| 2: 1+1 | 17: | 1+1+15 |
| 3: 3 | 18: | $3+15$ |
| 4: 1+3 | 19: | 1+3+15 |
| 5: 1+1+3 | 20: | 10+10 |
| 6: 6 | 21: | 21 |
| 7: 1+6 | 22: | 1+21 |
| 8: $1+1+6$ | 23: | 1+1+21 |
| 9: 3+6 | 24: | $3+21$ |
| 10: 10 | 25: | 10+15 |
| 11: 1+10 | 26: | 1+10+15 |
| 12: 1+1+10 | 27: | 1+10+21 |
| 13: 3+10 | 28: | 28 |
| 14: 1+3+10 | 29: | 1+28 |
| 15: 15 | 30: | 1+1+28 |

## Proposed Triangular Number DAC



## Triangular Number Weighted Voltage (1)

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ..n(n+1)/2


## Triangular Number Weighted Voltage (2)

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ..n(n+1)/2


## Triangular Number Weighted Voltage (3)

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ..n(n+1)/2


## Triangular Number Weighted Voltage (4)

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ..n(n+1)/2


## Triangular Number Weighted Voltage (5)

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ..n(n+1)/2


## When Digital Input is 9: Calculation

Triangular Number: $1,3,6,10,15,21,28,36,45,55,66,78,91, . . n(n+1) / 2$


## When Digital Input is 9: Simulation



## When Digital Input is 9: Simulation Result



## When Digital Input is 27: Calculation



## When Digital Input is 27: Simulation



## When Digital Input is 27: Simulation Result



## Outline

- Background
- Triangular Number DAC
- Polygonal Number DAC
- Prime Number DAC
- Summary


## Polygonal Number

## Polygonal number

Represented as dots or pebbles
arranged in the shape of a regular polygon.

(a)Triangular numbers.

(c) Hexagonal numbers.

## Polygonal Number Theorem

## Any natural number

1expressed by

## Sum of N N -angular numbers

k -th of N -angular number, $\mathrm{m}(\mathrm{N}, \mathrm{k})$ can be expressed by

$$
m(N, k)=(1 / 2) k[(N-2) k-(N-4)]
$$

Then N -angular numbers are given by

$$
\begin{aligned}
1, & N, \\
\text { for } k=1, & 2 N
\end{aligned}, \quad 3, \quad 4, \quad 5, \quad 10 \mathrm{~N}-15, \ldots
$$

## N -angle Number Weighted Resistor Network



## DAC Configuration based on N -angular Number



## N -angular Number Weighted Voltage (1)

N-angular Number: 1, N, 3N-3, 6N-8, 10N-15,...


## N -angular Number Weighted Voltage (2)

N-angular Number: 1, $\mathrm{N}, 3 \mathrm{~N}-3,6 \mathrm{~N}-8,10 \mathrm{~N}-15, \ldots$


## N -angular Number Weighted Voltage (3)

N -angular Number: 1, $\mathrm{N}, 3 \mathrm{~N}-3,6 \mathrm{~N}-8,10 \mathrm{~N}-15, \ldots$


## N -angular Number Weighted Voltage (4)

N-angular Number: 1, N, 3N-3, 6N-8, 10N-15,...


## N -angular Number Weighted Voltage (5)

N -angular Number: 1, N, 3N-3, 6N-8, 10N-15, ...


## Outline

- Research Background
- Triangular Number DAC
- Polygonal Number DAC
- Prime Number DAC
- Summary


## Goldbach's Conjecture

Goldbach's Conjecture:
All even numbers can be represented by sum of two prime numbers.

| + | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4 | 5 | 7 | 9 | 13 | 15 | 19 | 21 |
| 3 | 5 | 6 | 8 | 10 | 14 | 16 | 20 | 22 |
| 5 | 7 | 8 | 10 | 12 | 16 | 18 | 22 | 24 |
| 7 | 9 | 10 | 12 | 14 | 18 | 20 | 24 | 26 |
| 11 | 13 | 14 | 16 | 18 | 22 | 24 | 28 | 30 |
| 13 | 15 | 16 | 18 | 20 | 24 | 26 | 30 | 32 |
| 17 | 19 | 20 | 22 | 24 | 28 | 30 | 34 | 36 |
| 19 | 21 | 22 | 24 | 26 | 30 | 32 | 36 | 38 |

## Prime Numbers

Prime numbers:
$2,3,5,7,11,13,17,19,23,29, \ldots \ldots$

All even numbers are represented by two prime numbers

| $2:$ | 2 | $32:$ | $13+19$ |
| :--- | :--- | :--- | :--- |
| 4: | $2+2$ | $34:$ | $17+17$ |
| 6: | $3+3$ | $36:$ | $17+19$ |
| 8: | $3+5$ | $38:$ | $19+19$ |
| $10:$ | $3+7$ | $40:$ | $17+23$ |
| $12:$ | $5+7$ | $42:$ | $19+23$ |
| $14:$ | $7+7$ | $44:$ | $13+31$ |
| $16:$ | $5+11$ | $46:$ | $23+23$ |
| $18:$ | $7+11$ | $48:$ | $19+29$ |
| $20:$ | $7+13$ | $50:$ | $19+31$ |
| $22:$ | $11+11$ | $52:$ | $23+29$ |
| $24:$ | $11+13$ | $54:$ | $23+31$ |
| $26:$ | $13+13$ | $56:$ | $19+37$ |
| $28:$ | $11+17$ | $58:$ | $29+29$ |
| $30:$ | $13+17$ | $60:$ | $29+31$ |

## Proposed Prime Number DAC



2 current sources
2 switch arrays


## Proposed Prime Number DAC Operation (1)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ......


## Proposed Prime Number DAC Operation (2)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ......


Here Vo=(1/14)RI

## Proposed Prime Number DAC Operation (3)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ......


Here Vo=(1/14)RI

## Proposed Prime Number DAC Operation (4)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ......


Here Vo=(1/14)RI

## Proposed Prime Number DAC Operation (5)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ......


Here Vo=(1/14)RI

## Proposed Prime Number DAC Operation (6)

Prime numbers: $1,2,3,5,7,11,13,17,19,23,29, \ldots \ldots$.


Here Vo=(1/14)RI

## Proposed Prime Number DAC Operation (7)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ......


Here Vo=(1/14)RI

## Digital Input with Addition of 2 Prime Numbers

|  |  | $\leftarrow 2$ : | 2 |  |  |  | 32 | 2 2: | 13+19 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | $\leftarrow 4$ : | 2+2 |  | 17 | $\leftarrow$ | 34 | 4: | 17+17 |
|  | 3 | $\leftarrow 6$ : | 3+3 |  | 18 |  | 36 | 6: | 17+19 |
|  | 4 | $\leftarrow 8$ : | 3+5 |  | 19 |  | - 38 | 8: | 19+19 |
|  | 5 | $\leftarrow 10$ : | 3+7 |  | 20 |  | 40 | 0: | 17+23 |
|  | 6 | $\leftarrow 12:$ | 5+7 |  | 21 |  | 42 |  | 19+23 |
|  | 7 | $\leftarrow 14:$ | 7+7 |  | 22 |  | 44 |  | 13+31 |
| Input | 8 | $\leftarrow 16:$ | 5+11 | Input | 23 |  | 46 |  | 23+23 |
|  | 9 | $\leftarrow 18$ : | 7+11 |  | 24 |  | 48 |  | 19+29 |
|  |  | $\leftarrow$ 20: | 7+13 |  | 25 |  | 50 | 0: | 19+31 |
|  |  | $\leftarrow 22$ : | 11+11 |  | 26 |  | 52 | 2 : | 23+29 |
|  |  | $\leftarrow 24$ : | 11+13 |  | 27 |  | -54 | 4: | 23+31 |
|  |  | ↔ 26: | 13+13 |  | 28 | $\leftarrow$ | -56 | 6: | 19+37 |
|  |  | $\leftarrow 28$ : | 11+17 |  | 29 | $\leftarrow$ | -58 | 8: | 29+29 |
|  |  | $\leftarrow$ ¢ ${ }^{\text {\% }}$ | 13+17 |  |  |  | 60 | 0: | 29+31 |

## Prime Number DAC Operation for digital input =

## 6

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ......


## Prime number DAC operation for digital input = 6



## Prime number DAC operation for digital input = 6



## In case that digital input is 8



## In case that digital input is 8


$\mathbf{1 7}^{\text {th }}$ International SoC Design Conference

## Outline

- Research Background
- Triangular Number DAC
- Polygonal Number DAC
- Prime Number DAC
- Summary


## Summary



Triangular number DAC
3 current sources 3 switch arrays

## Polygonal number DAC

N current sources N switch arrays

## Prime number DAC

2 current sources
2 switch arrays

## Conclusion

- Completely new DAC architectures based on integer theory
- Discussions on their pros and cons are left for the future work.


## Acknowledgements

The authors thank Mr. Minh Tri Tran
for having the simulation together.

