

Advanced Data Converter Session

22 Oct. 2020 14:00-14:15

Digital-to-Analog Converter Architectures Based on Polygonal and Prime Numbers

Gunma University : Yuanyang Du, <u>Xueyan Bai</u>, Manato Hirai,

Shuhei Yamamoto, Anna Kuwana, Haruo Kobayashi

Oyama National College : Kazuyoshi Kubo

Research Objective

Interesting properties of integers

Possibility of new configurations of DAC

Outline

- Research Background
- Triangular Number DAC
- Polygonal number DAC
- Prime number DAC
- Summary

Outline

- Research Background
- Triangular Number DAC
- Polygonal Number DAC
- Prime Number DAC
- Summary

Importance of ADC / DAC

- Rapid development of digital electronics technology
- A natural signal is analog

DACs are Everywhere !

Communication equipment

Electronic measuring instrument

Audio systems

100000

Integer Theory and Electronic Circuit Design

Many interesting properties of Integers

Electronic circuit designs

Our research here makes their links !

Carolus Fridericus Gauss (1777-1855)

Integer theory is the queen of Mathematics

Outline

- Research Background
- Triangular Number DAC
- Polygonal Number DAC
- Prime Number DAC
- Summary

What is Triangular Number ?

.......

Theory of Trigonometric Numbers

Any natural number

Sum of 3 triangular numbers

1:	1	16:	1+15
2:	1+1	17:	1+1+15
3:	3	18:	3+15
4:	1+3	19:	1+3+15
5:	1+1+3	20:	10+10
6:	6	21:	21
7:	1+6	22:	1+21
8:	1+1+6	23:	1+1+21
9:	3+6	24:	3+21
10:	10	25:	10+15
11:	1+10	26:	1+10+15
12:	1+1+10	27:	1+10+21
13:	3+10	28:	28
14:	1+3+10	29:	1+28
15:	15	30:	1+1+28

Proposed Triangular Number DAC

Triangular Number Weighted Voltage (1)

Triangular Number Weighted Voltage (2)

Triangular Number Weighted Voltage (3)

Triangular Number Weighted Voltage (4)

Triangular Number Weighted Voltage (5)

When Digital Input is 9: Calculation

When Digital Input is 9: Simulation

When Digital Input is 9: Simulation Result

When Digital Input is 27: Calculation

Vout = (6+6+15)Vo=27Vo.

When Digital Input is 27: Simulation

When Digital Input is 27: Simulation Result

Outline

- Background
- Triangular Number DAC
- Polygonal Number DAC
- Prime Number DAC
- Summary

Polygonal Number

Polygonal Number Theorem

Sum of **N** N-angular numbers

k-th of N-angular number, m(N, k) can be expressed by

m(N, k) = (1/2) k [(N-2)k - (N-4)]

Then N-angular numbers are given by

1, N, 3N-3, 6N-8, 10N-15, ... for k=1, 2, 3, 4, 5, ...

N-angle Number Weighted Resistor Network

DAC Configuration based on N-angular Number

N-angular Number Weighted Voltage (1)

N-angular Number: 1, N, 3N-3, 6N-8, 10N-15, ...

N-angular Number Weighted Voltage (2)

N-angular Number: 1, N, 3N-3, 6N-8, 10N-15, ...

N-angular Number Weighted Voltage (3)

N-angular Number Weighted Voltage (4)

N-angular Number Weighted Voltage (5)

Outline

- Research Background
- Triangular Number DAC
- Polygonal Number DAC
- Prime Number DAC
- Summary

Goldbach's Conjecture

Goldbach's Conjecture:

All even numbers can be represented by sum of two prime numbers.

+	2	3	5	7	11	13	17	19
2	4	5	7	9	13	15	19	21
3	5	6	8	10	14	16	20	22
5	7	8	10	12	16	18	22	24
7	9	10	12	14	18	20	24	26
11	13	14	16	18	22	24	28	30
13	15	16	18	20	24	26	30	32
17	19	20	22	24	28	30	34	36
19	21	22	24	26	30	32	36	38

Prime Numbers

Prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

All even numbers are represented by two prime numbers

<mark>2:</mark> 2	32:	13+19
4: 2+2	34:	17+17
<mark>6:</mark> 3+3	36:	17+19
<mark>8:</mark> 3+5	38:	19+19
10: 3+7	40:	17+23
12: 5+7	42:	19+23
14: 7+7	44:	13+31
<mark>16:</mark> 5+11	46:	23+23
<mark>18:</mark> 7+11	48:	19+29
20: 7+13	50:	19+31
22: 11+11	52:	23+29
24: 11+13	54:	23+31
26: 13+13	56:	19+37
28: 11+17	58:	29+29
30: 13+17	60:	29+31

Proposed Prime Number DAC

Proposed Prime Number DAC Operation (1)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

Proposed Prime Number DAC Operation (2)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

Proposed Prime Number DAC Operation (3)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

Proposed Prime Number DAC Operation (4)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

Proposed Prime Number DAC Operation (5)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

Proposed Prime Number DAC Operation (6)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

Proposed Prime Number DAC Operation (7)

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

Here Vo=(1/14)RI

Digital Input with Addition of 2 Prime Numbers

Digital Input	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2+2 3+3 3+5 3+7 5+7 7+7 5+11 7+11 7+13 11+11 11+13	Digital Input	$16 \leftarrow 32$: $13+19$ $17 \leftarrow 34$: $17+17$ $18 \leftarrow 36$: $17+19$ $19 \leftarrow 38$: $19+19$ $20 \leftarrow 40$: $17+23$ $21 \leftarrow 42$: $19+23$ $22 \leftarrow 44$: $13+31$ $23 \leftarrow 46$: $23+23$ $24 \leftarrow 48$: $19+29$ $25 \leftarrow 50$: $19+31$ $26 \leftarrow 52$: $23+29$ $27 \leftarrow 54$: $23+31$ $28 \leftarrow 56$: $19+37$
	13 ← 26 :	13+13		28 ← 56 : 19+37
	14 ← 28: 15 ← 30:			29 ← 58: 29+29 30 ← 60: 29+31

Prime Number DAC Operation for digital input =

6

Prime numbers: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

Prime number DAC operation for digital input = 6

Prime number DAC operation for digital input = 6

In case that digital input is 8

In case that digital input is 8

Outline

......

- Research Background
- Triangular Number DAC
- Polygonal Number DAC
- Prime Number DAC
- Summary

Summary

Triangular number DAC

..........

- 3 current sources
- 3 switch arrays

Polygonal number DAC

N current sources N switch arrays

Prime number DAC

- 2 current sources
- 2 switch arrays

Conclusion

- Completely new DAC architectures based on integer theory
- Discussions on their pros and cons are left for the future work.

Acknowledgements

The authors thank Mr. Minh Tri Tran

for having the simulation together.