

22 Oct. 2020 14:15-14:30

Nonlinearity Analysis of Resistive Ladder-Based Current-Steering Digital-to-Analog Converter

<u>Manato Hirai</u>, Hiroshi Tanimoto Yuji Gendai, Shuhei Yamamoto Anna Kuwana, Haruo Kobayashi

Gunma University Kitami Institute of Technology

- Background & Objective
- Architecture of *N*-ary DAC
 - Ternary-Ladder DAC
 - Quaternary-Ladder DAC
- DNL Simulation Results
 - $-\sigma_{DNL}$ of Some Ladder-based DACs
- Conclusion

- Background & Objective
- Architecture of *N*-ary DAC
 - Ternary-Ladder DAC
 - Quaternary-Ladder DAC
- DNL Simulation Results
 - $-\sigma_{DNL}$ of Some Ladder-based DACs
- Conclusion

Background

• R-2R current-steering DAC

Simple architecture, No need for decoder

Background & Objective

- R-2R current-steering DAC
 - But, the linearity deteriorates with a clear pattern on the input code

Mismatches {among current sources {among resistors

- Our previous investigation
 - DAC with N-ary Resistive Ladder
 - **Clarify DNL tendencies for** *N***-ary Ladder**
 - To Develop efficient calibration and testing methods

- Background & Objective
- Architecture of *N*-ary DAC

- Ternary-Ladder DAC

- Quaternary-Ladder DAC
- DNL Simulation Results

 $-\sigma_{DNL}$ of Some Ladder-based DACs

Conclusion

[3] M. Hirai, S. Yamamoto, H. Arai, A. Kuwana, H. Tanimoto, Y. Gendai, H. Kobayashi, "Systematic Construction of Resistor Ladder Network for N-ary DACs", IEEE ASICON (Oct. 2019)

Architecture of *N*-ary DAC

- *N*-ary DAC
 - Generalized resistive-ladder based DAC
 - Current division ratio is different from R-2R

Architecture of *N*-ary DAC

Theoretical output voltage

Output voltage

$$V_{OUT}(I_1, \cdots, I_K, R_0, N, K) = R_0 \cdot N(N-1) \sum_{k=1}^{\infty} \left(\frac{I_k}{N^{K-k}} \right)$$

- Output voltage steps $\Rightarrow N^K 1$
- When N = 2

⇒ K-bit, R-2R current-steering DAC

Notation

- N: Current division ratio,
- I_1, \dots, I_K : Injected currents,
- **R**₀ : Unit resistance

K : Stage number /: Unit current

K

- Background & Objective
- Architecture of *N*-ary DAC
 - Ternary-Ladder DAC
 - Quaternary-Ladder DAC
- DNL Simulation Results
 - $-\sigma_{DNL}$ of Some Ladder-based DACs
- Conclusion

N = 3, Ternary-Ladder DAC

 $4R_0$

 $2R_0$

- Resistance ratio $4R_0: 3R_0: 2R_0$
- Voltage steps
 N^K 1
 - = 3⁴ 1 = 80 steps
- Output voltage

$$V_{OUT}(I_1, I_2, I_3, I_4, R_0) = R_0 \cdot 6\left(I_4 + \frac{1}{3^1}I_3 + \frac{1}{3^2}I_2 + \frac{1}{3^3}I_1\right)$$

Each $I_k \rightarrow \text{ternary}$ weighted.

 $4R_0$

4-stage Ternary DAC

 $\overline{13R_0}$

 $4R_0$

 $3R_0$

 V_{OUT}

N = 4, Quaternary-Ladder DAC

- Resistance ratio $9R_0: 4R_0: 3R_0$
- Voltage steps
 N^K 1 = 4⁴ 1
 = 255 steps
- Output voltage

 $V_{OUT}(I_1, I_2, I_3, I_4, R_0) = R_0 \cdot 12$

- Background & Objective
- Architecture of *N*-ary DAC

- Ternary-Ladder DAC

– Quaternary-Ladder DAC

- DNL Simulation Results
 - $-\sigma_{DNL}$ of Some Ladder-based DACs
- Conclusion

Monte-Carlo Simulation

• Definition of Differential nonlinearity (DNL) $DNL(i) = \frac{V_{OUT}(i) - V_{OUT}(i-1)}{V_{LSB}} - 1$

 V_{LSB} : Ideal step size

- Simulation conditions
 - 10,000 simulations
 - Random errors follow the normal distribution
 - σ = 0.01 of R_0 and I

Simulated Circuits

Result of 4-bit R-2R DAC

• σ_{DNL} becomes the largest at the MSB transition, the 2nd largest at the 2nd-MSB transition

Result of 3-stage Ternary DAC

1. σ_{DNL} becomes the largest at 9 and 18, 1/3 and 2/3 of the input range

Result of 3-stage Ternary DAC

- 2. Similar tendencies in divided ranges
- 3. Minimum σ_{DNL} 's appear at two consecutive codes.

Result of 2-stage Quaternary DAC

1. σ_{DNL} becomes the largest at 4, 8 and 12. 1/4, 1/2 and 3/4 of input range

Result of 2-stage Quaternary DAC

2. Minimum σ_{DNL} 's appear at three consecutive codes.

4-bit Segmented DAC

- At 4, 8 and 12
 ⇒ similar tendency to quaternary DAC
- 2. The others

0.01

Input Code Expressed in Decimal Form

21

Comparison of σ_{DNL} 's

- Background & Objective
- Architecture of *N*-ary DAC
 - Ternary-Ladder DAC
 - Quaternary-Ladder DAC
- DNL Simulation Results

 $-\sigma_{DNL}$ of Some Ladder-based DACs

Conclusion

Conclusion

- We have shown the DNL tendencies for some types of resistor ladder-based DAC
 - Due to mismatches of current sources and resistors
- σ_{DNL} becomes the largest at specific input codes, which depend on the DAC structure.
 - By focusing on the code, these results would be useful to develop self-calibration techniques and production testing methods