6th International Conference on Signal and Image Processing (SIPRO 2020)

July 25-26, 2020, London, United Kingdom

DERIVATION OF LOOP GAIN AND STABILITY TEST FOR LOW-PASS TOW-THOMAS BIQUAD FILTER

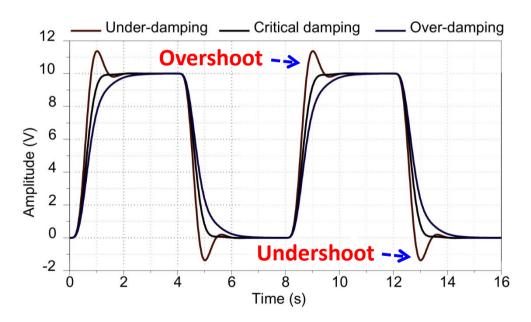
Minh Tri Tran^{*}, Anna Kuwana, Haruo Kobayashi

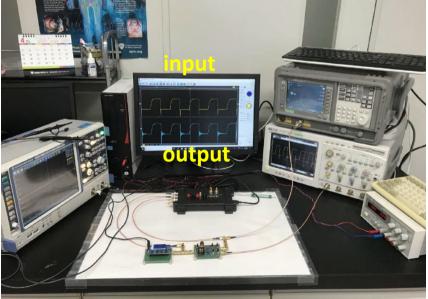
- 1. Research Background
- Reviews of Complex Functions
- Transfer Function and Its Self-loop Function
- Proposed Methods for Stability Test
- 2. Analysis of High-Order Transfer Functions
- Behaviors of Basic Ideal Op Amp Networks
- Effects of Miller's Capacitor in Two-stage Op Amp
- 3. Experimental Results
- Measurements of Self-loop Functions in Second-order Tow-Thomas Biquad Filter
- 4. Conclusions

1. Research Background Motivation of Study

 Ringing occurs in both with and without feedback systems.

→Unstable system





Objectives and Achievements

Objectives

 Investigation of operating region of highorder active networks based on phase margin at unity gain of self-loop function

Design and stability test for Tow-Thomas LPF

Achievements

 Implementation and stability test for secondorder low-pass Tow-Thomas Biquad Filter

1. Research Background Reviews of Complex Functions

Complex function with frequency variable

$$H(\omega) = \operatorname{Re}(\omega) + j\operatorname{Im}(\omega) = \operatorname{Real}\{H(\omega)\} + j\operatorname{Imag}\{H(\omega)\}$$

In complex plane domain

 $H(\omega) = \begin{cases} \operatorname{Re}(\omega) = \operatorname{Real}\{H(\omega)\} \\ \operatorname{Im}(\omega) = \operatorname{Imag}\{H(\omega)\} \\ \operatorname{Fre}(\omega) = \operatorname{angular frequency} \end{cases}$

In spectrum domain

$$H(\omega) = |H(\omega)|e^{j\theta(\omega)}$$
$$|H(\omega)| = \sqrt{\left[\operatorname{Re}\left\{H(\omega)\right\}\right]^{2} + \left[\operatorname{Im}\left\{H(\omega)\right\}\right]^{2}}$$
$$\theta(\omega) = \arctan\left(\frac{\operatorname{Im}\left\{H(\omega)\right\}}{\operatorname{Re}\left\{H(\omega)\right\}}\right)$$

OPOlar chart (Nyquist chart)

Magnitude-frequency, angular-frequency plots (Bode plots)
 Magnitude-angular diagrams (Nicholas diagrams)

Transfer Function and Its Self-loop Function

$$\begin{array}{c} \text{Linear system} \\ \text{Input} \\ V_{in}(\omega) \end{array} \xrightarrow{} H(\omega) \\ \end{array} \xrightarrow{} V_{out}(\omega) \end{array}$$

 $A(\omega)$: Open loop function

- $H(\omega)$: Transfer function
- $L(\omega)$: Self-loop function

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

 $H(\omega) = \frac{A(\omega)}{0} = \infty$

Unstable system

Constraint for oscillation

$$1 + L(\omega) = 0 \quad \Longrightarrow \begin{cases} |L(\omega)| = 1 \\ \angle L(\omega) = -180^{\circ} \end{cases} \quad \Leftrightarrow \qquad \begin{array}{c} \text{PHASE MARGIN} \\ \text{AT UNITY GAIN} \end{array}$$

1. Research Background Signal Flow Graph for Transfer Function

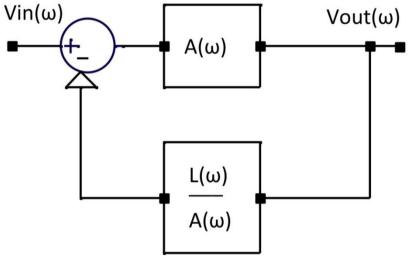
Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

Output voltage

$$V_{out}(\omega) = A(\omega) \left[V_{in}(\omega) - \frac{L(\omega)}{A(\omega)} V_{out}(\omega) \right]$$

Negative feedback Network

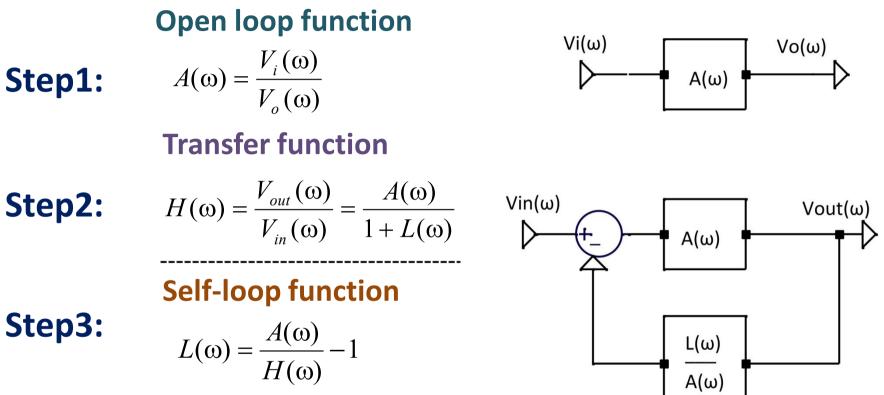


Signal flow graph

To meet the specified requirements • High stability • Fast transient response, and

Good steady-state performance.

Proposed Comparison Measurement Technique



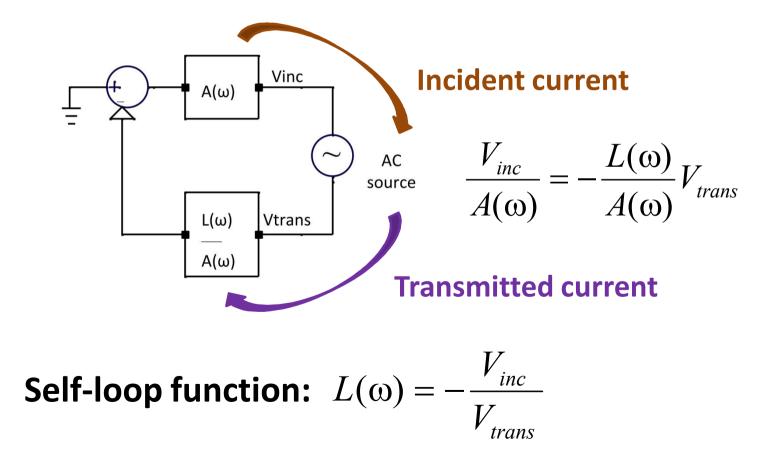
Sequence of steps:

- (i) Measurement of open loop function $A(\omega)$,
- (ii) Measurement of transfer function $H(\omega)$, and
- (iii) Derivation of self-loop function.

Proposed Alternating Current Conservation (1)

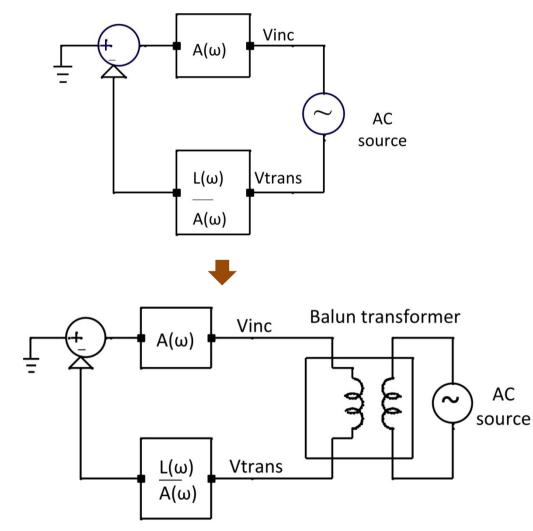
Idea: Alternating current is conserved.

Incident current = Transmitted current

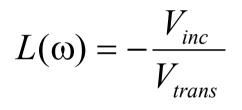


Proposed Alternating Current Conservation (2)

Alternating current conservation using balun transformer

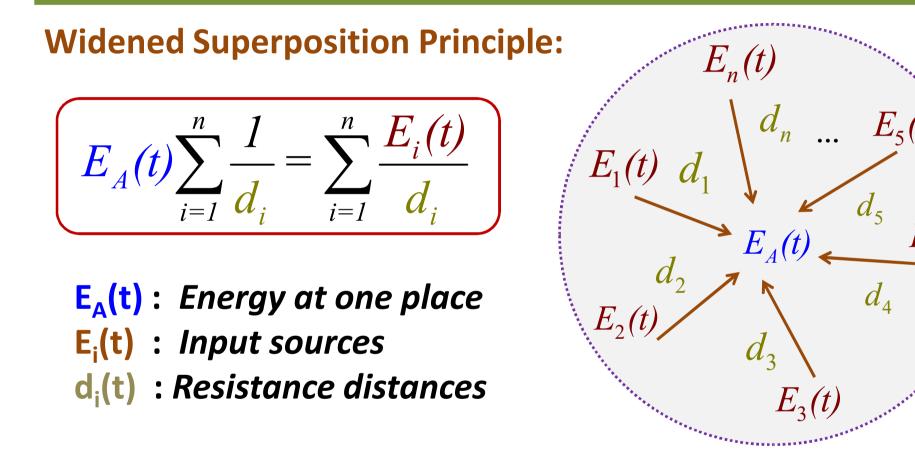


Self-loop function:



Balun transformer (10 mH inductance)

1. Research Background Proposed Widened Superposition Principle



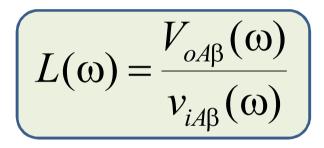
• Multi-source systems, feedback networks (op amps, amplifiers), polyphase filters, complex filters...

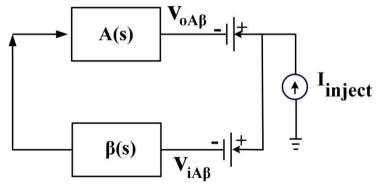
Limitations of Conventional Methods (1)

[8] Middlebrook, R.D., "Measurement of Loop Gain in Feedback Systems", Int. J. Electronics, vol 38, No. 4, pp. 485-512, 1975.

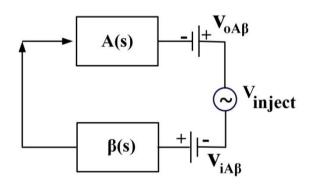
Measurement of loop gain

- Current injection
- Voltage injection





Current injection method



Voltage injection method

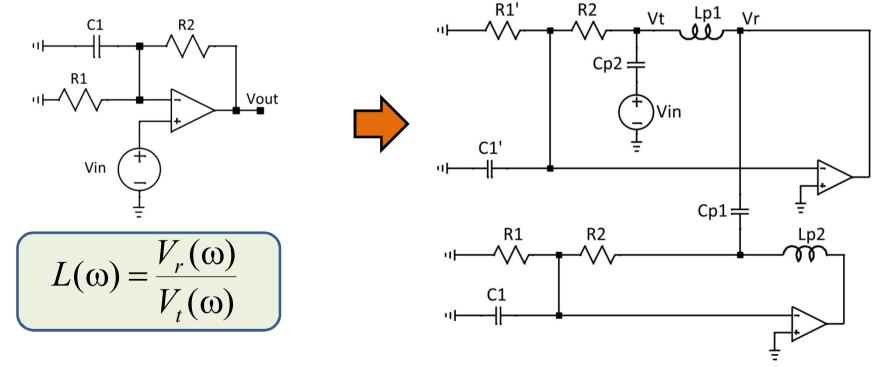
→ Difficult to measure self-loop function in analog circuits

Limitations of Conventional Methods (2)

[9] A. S. Sedra and K. C. Smith, "Microelectronic Circuits," 6th ed. Oxford University Press, New York, 2010.

Measurement of loop gain

Replica measurement



→ Difficult to measure two real different circuits

Limitations of Conventional Methods (3)

- Conventional Superposition:
- →Solving for every source voltage and current, perhaps several times.
- Conventional measurement of loop gain (Middle Brook's)
- → Applying only in feedback systems (switching DC-DC converters).
- Conventional replica measurement of loop gain
- \rightarrow Using two identical networks (difficult in practical measurement).
- **•Conventional Nyquist's stability condition**
- \rightarrow Using in theoretical analysis for feedback systems (Lab simulation).

 Conventional concepts, analysis and measurement of loop gain are not unique.

2. Analysis of High-Order Transfer Functions Behaviors of Second-order Transfer Function

Second-order transfer function: $H(\omega) = \frac{1}{1 + a_0 (j\omega)^2 + a_1 j\omega}$

Case	Over-damped	Critically damped	Under-damped	
Delta (Δ)	$\frac{1}{a_0} < \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 > 0$	$\frac{1}{a_0} = \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 = 0$	$\frac{1}{a_0} > \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 < 0$	
$\begin{array}{c} \textbf{Module} \\ H(\omega) \end{array}$	$\frac{\frac{1}{a_0}}{\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}$	$\frac{\frac{1}{a_0}}{\left[\omega^2 + \left(\frac{a_1}{2a_0}\right)^2\right]}$	$\frac{\frac{1}{a_0}}{\sqrt{\left(\omega - \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}\right)^2 + \left(\frac{a_1}{2a_0}\right)^2}}\sqrt{\left(\omega + \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}\right)^2 + \left(\frac{a_1}{2a_0}\right)^2}}$	
$\begin{array}{c} \textbf{Angular} \\ \theta(\omega) \end{array}$	$-\arctan\left(\frac{\omega}{\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}}\right) - \arctan\left(\frac{\omega}{\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}}\right)$	$-2 \arctan\left(\frac{2a_0\omega}{a_1}\right)$	$-\arctan\left(\frac{\omega - \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right) - \arctan\left(\frac{\omega + \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)$	
$\omega_{cut} = \frac{a_1}{2a_0}$	$ H(\omega_{cut}) < \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) > -\frac{\pi}{2}$	$ H(\omega_{cut}) = \frac{2a_0}{a_1} \theta(\omega_{cut}) = -\frac{\pi}{2}$	$ H(\omega_{cut}) > \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) < -\frac{\pi}{2}$	

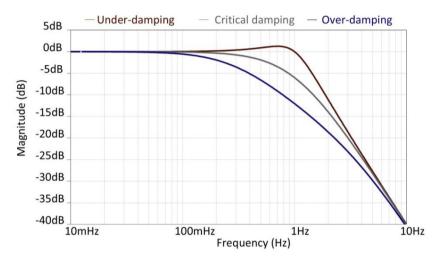
2. Analysis of High-Order Transfer Functions Behaviors of Second-order Self-loop Function

Second-order self-loop function: $L(\omega) = j\omega [a_0 j\omega + a_1]$

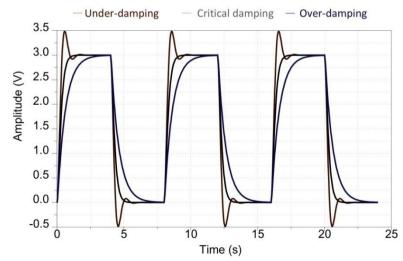
Case	Over-damped		Critically damped		Under-damped	
Delta (Δ)	$\Delta = a_1^2 - 4a_0 > 0$		$\Delta = a_1^2 - 4a_0 = 0$		$\Delta = a_1^2 - 4a_0 < 0$	
$ L(\omega) $	$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$	
θ(ω)	$\frac{\pi}{2}$ + arctan $\frac{a_0\omega}{a_1}$		$\frac{\pi}{2}$ + arctan $\frac{a_0\omega}{a_1}$		$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$	
$\omega_1 = \frac{b}{2a}\sqrt{\sqrt{5}-2}$	$ L(\omega_1) > 1$	$\pi - \theta(\omega_1) > 76.3^{\circ}$	$ L(\omega_1) = 1$	$\pi - \theta(\omega_1) = 76.3^{\circ}$	$ L(\omega_1) < 1$	$\pi - \theta(\omega_1) < 76.3^{\circ}$
$\omega_2 = \frac{b}{2a}$	$ L(\omega_2) > \sqrt{5}$	$\pi - \theta(\omega_2) > 63.4^{\circ}$	$\left L(\omega_2)\right = \sqrt{5}$	$\pi - \Theta(\omega_2) = 63.4^{\circ}$	$\left L(\omega_2)\right < \sqrt{5}$	$\pi - \theta(\omega_2) < 63.4^{\circ}$
$\omega_3 = \frac{b}{a}$	$ L(\omega_3) > 4\sqrt{2}$	$\pi - \theta(\omega_3) > 45^{\circ}$	$\left L(\omega_3)\right = 4\sqrt{2}$	$\pi - \theta(\omega_3) = 45^\circ$	$\left L(\omega_3)\right < 4\sqrt{2}$	$\pi - \theta(\omega_3) < 45^{\circ}$

2. Analysis of High-Order Transfer Functions Behaviors of Second-order System

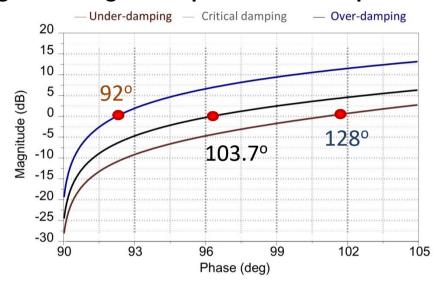
Magnitude response of transfer function



Transient response



Magnitude-angular response of self-loop function



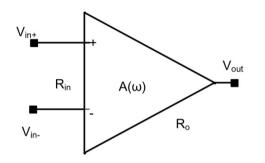
Over-damping: →Phase margin is 84 degrees. Critical damping:

→Phase margin is 76.3 degrees.
Under-damping:

 \rightarrow Phase margin is 52 degrees.

2. Analysis of High-Order Transfer Functions Mathematical Model of Ideal Op Amp

Ideal op amp



Open-loop function $A(\omega)$

$$A(\omega) = \frac{V_{out}}{V_{in+} - V_{in-}} = \frac{A_0}{1 + \frac{j\omega}{\omega_{bw}}}$$

Gain-bandwidth (GBW), bandwidth fbw

Equivalent model of op amp

 $A(\omega)$

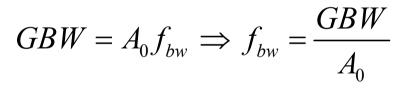
 R_{o}

 V_{out}

 V_{in+}

Vin-

Rin

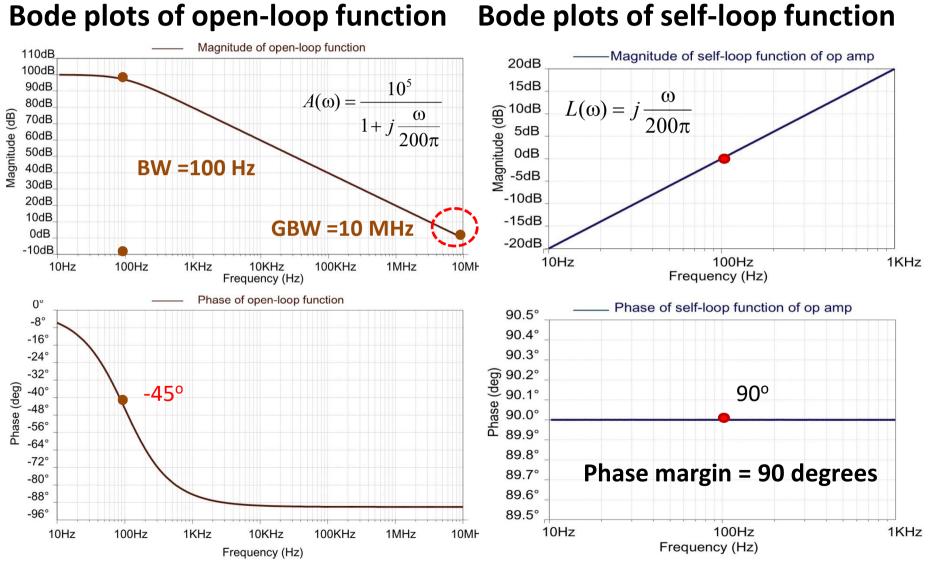


Here, GBW =10 MHz, DC gain Ao = 100000

Open-loop function and self-loop function

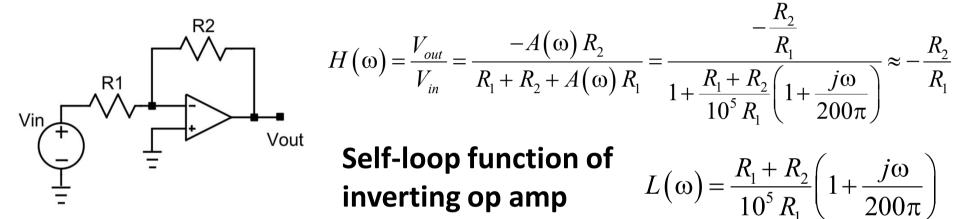
$$A(\omega) = \frac{10^5}{1 + j\frac{\omega}{200\pi}}; L(\omega) = j\frac{\omega}{200\pi} = 10^5\frac{V_{in}}{V_{out}} - 10^5\frac{V_{in}}{V_{out}}$$

2. Analysis of High-Order Transfer Functions Behavior of Open-loop Function of Ideal Op Amp



чu

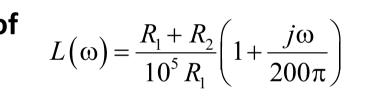
2. Analysis of High-Order Transfer Functions **Reviews of Basic Op Amp Networks**



Inverting op amp

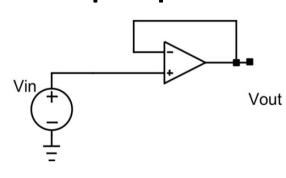
Transfer function of inverting op amp

Self-loop function of inverting op amp



Buffer using ideal

op amp

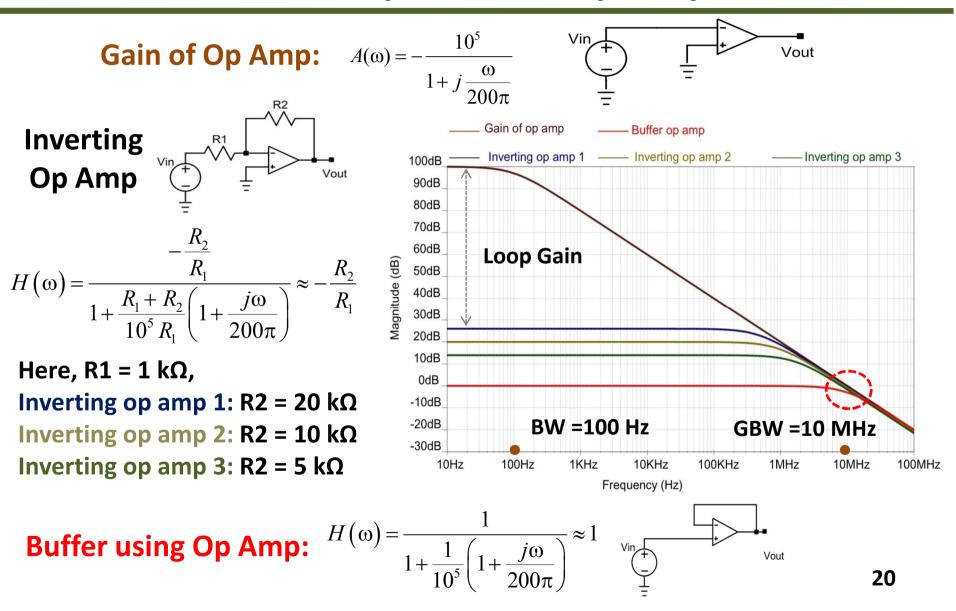


Transfer function of buffer using op amp

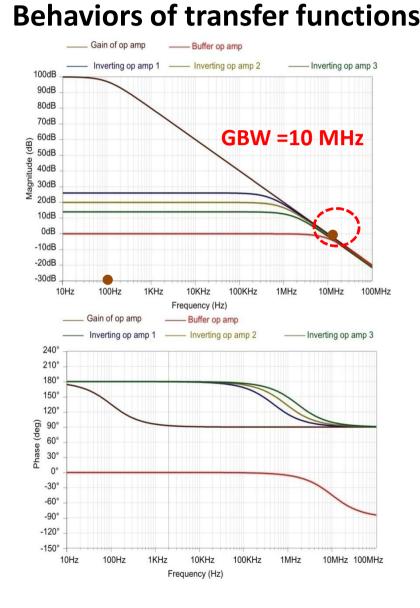
$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{A(\omega)}{1 + A(\omega)} = \frac{1}{1 + \frac{1}{10^5} \left(1 + \frac{j\omega}{200\pi}\right)} \approx 1$$

Self-loop function $L(\omega) = \frac{1}{10^5} \left(1 + \frac{j\omega}{200\pi} \right)$ of buffer

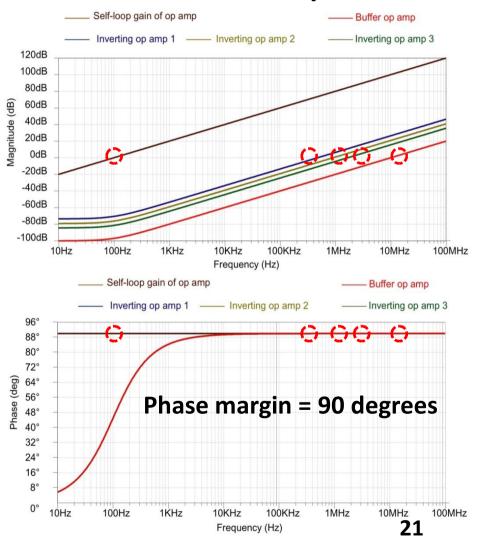
2. Analysis of High-Order Transfer Functions Simulations of Loop Gains in Op Amp Networks



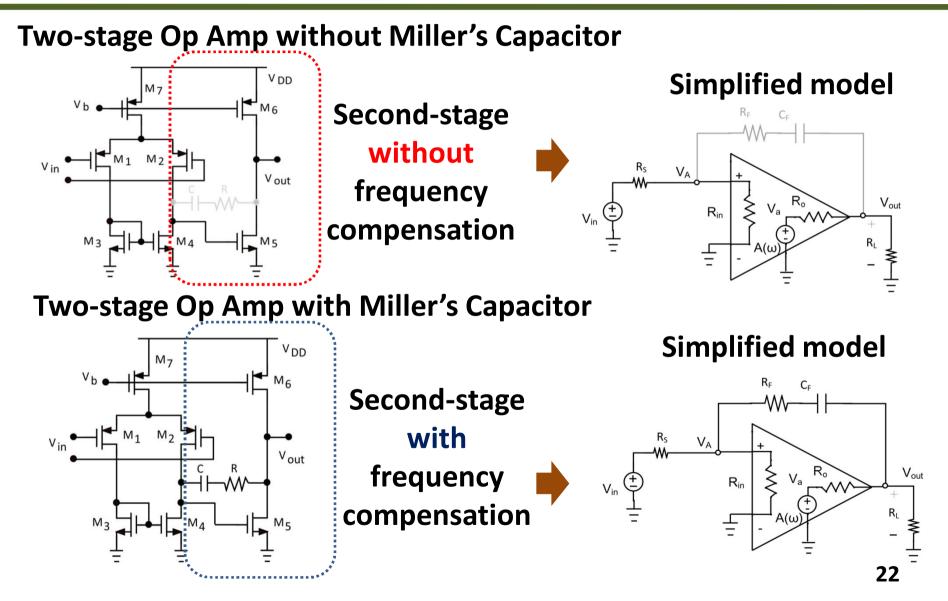
2. Analysis of High-Order Transfer Functions Transfer & Self-loop Functions in Op Amp Networks



Behaviors of self-loop functions

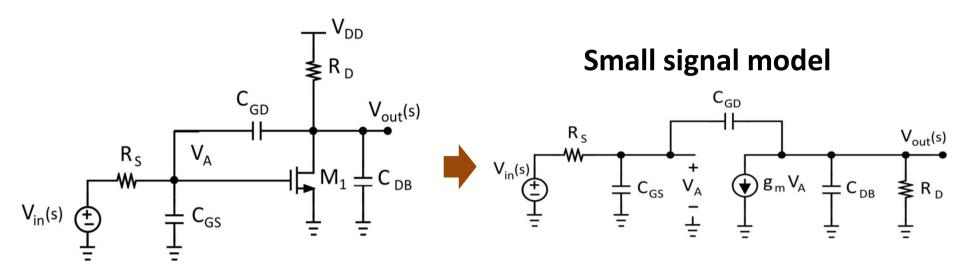


2. Analysis of High-Order Transfer Functions Behavior of Two-stage Op Amp in Feedback Circuits



2. Analysis of High-Order Transfer Functions Two-stage Op Amp without Miller's Capacitor

Second-stage without frequency compensation



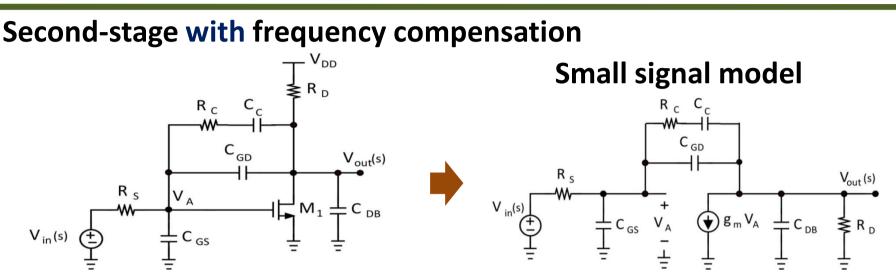
Transfer function $H(\omega)$ and self-loop function $L(\omega)$

$$H(\omega) = \frac{b_0 j\omega + b_1}{a_0 (j\omega)^2 + a_1 j\omega + 1}; L(\omega) = a_0 (j\omega)^2 + a_1 j\omega$$

Here,
$$a_0 = R_D C_{GD}; a_1 = -R_D g_m; b_0 = R_D R_S \left[\left(C_{GD} + C_{DB} \right) \left(C_{GS} + C_{GD} \right) - C_{GD}^2 \right]$$

 $b_1 = \left[R_D \left(C_{GD} + C_{DB} \right) + R_S \left(C_{GS} + C_{GD} \right) + R_D R_S g_m C_{GD} \right]$ 23

2. Analysis of High-Order Transfer Functions Two-stage Op Amp with Miller's Capacitor



Apply superposition principle at Va, and Vout

$$V_{A}\left(\frac{1}{R_{S}} + \frac{1}{Z_{CGD}} + \frac{1}{Z_{CGD}} + \frac{1}{R_{C} + Z_{CC}}\right) = \frac{V_{in}}{R_{S}} + V_{out}\left(\frac{1}{Z_{CGD}} + \frac{1}{R_{C} + Z_{CC}}\right)$$
$$V_{out}\left(\frac{1}{Z_{CGD}} + \frac{1}{R_{C} + Z_{CC}} + \frac{1}{Z_{CDB}} + \frac{1}{R_{D}}\right) = V_{A}\left(\frac{1}{Z_{CGD}} + \frac{1}{R_{C} + Z_{CC}} - g_{m}\right)$$

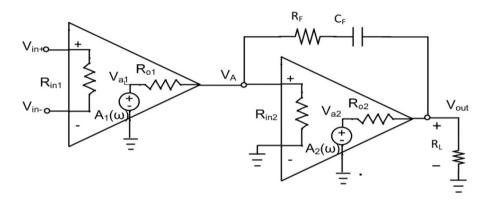
Transfer function $H(\omega)$ and self-loop function $L(\omega)$

$$H(\omega) = \frac{b_0 (j\omega)^3 + b_1 (j\omega)^2 + b_2 j\omega + b_3}{a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega + 1}; \quad L(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega + 1$$
24

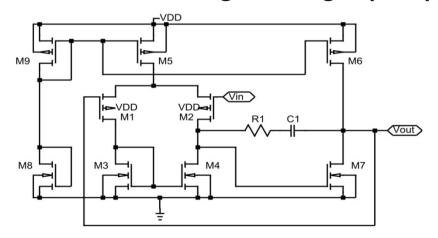
2. Analysis of High-Order Transfer Functions Effects of Miller's Capacitor on Buffer Op Amp



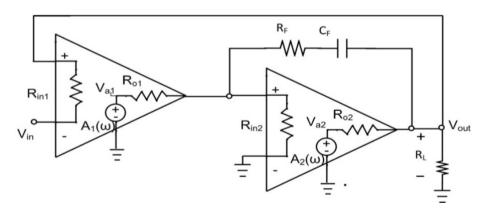
Simplified model of two-stage op amp



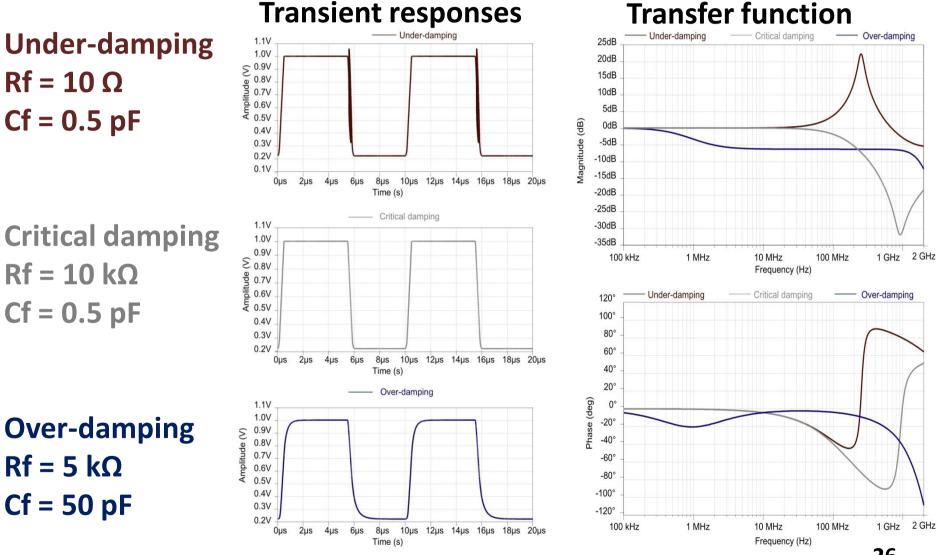
Buffer circuit using two-stage op amp



Simplified model of buffer circuit



2. Analysis of High-Order Transfer Functions **Effects of Miller's Capacitor on Buffer Op Amp**



26

2. Analysis of High-Order Transfer Functions Effects of Miller's Capacitor on Buffer Op Amp

Derivation of self-loop function ю M9 M5 <u>∟</u> M6 H-VDD VDD M1 M2 Vtran Vinc AC source M8 M3 M4 M7

Over-damping:

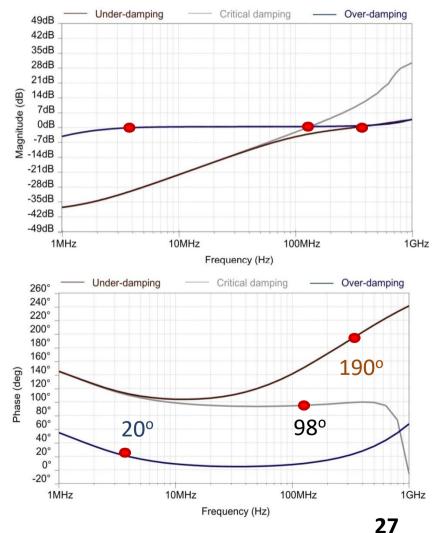
→Phase margin is 160 degrees. Critical damping:

\rightarrow Phase margin is 82 degrees.

Under-damping:

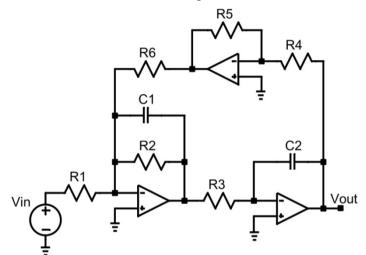
\rightarrow Phase margin is 10 degrees.

Self-loop function

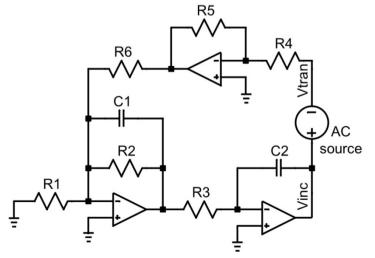


3. Design of High-Order Transfer Functions Analysis of Second-order Tow-Thomas Biquad LPF

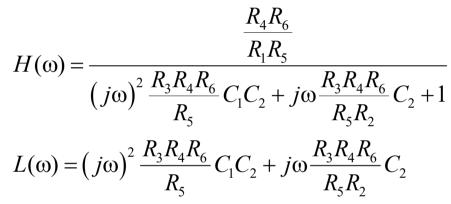
Tow-Thomas Biquad Network



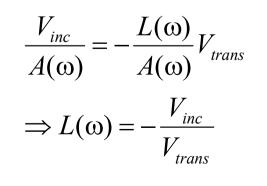
Derivation of self-loop function



Transfer function $H(\omega)$ and self-loop function $L(\omega)$



Based on alternating current conservation principle,



28

3. Design of High-Order Transfer Functions Analysis of Second-order Tow-Thomas Biquad LPF

Operating regions of Tow-Thomas biquad low-pass filter

$$H(\omega) = \frac{4R_2^2C_1}{R_1R_3C_2} \frac{1}{\left[\left(2R_2C_1\right)^2\left(j\omega\right)^2 + 2j\omega\left(2R_2C_1\right) + 1\right] + \left(2R_2C_1\right)^2 \left[\frac{R_5}{R_3R_4R_6C_1C_2} - \left(\frac{1}{2R_2C_1}\right)^2\right]\right]}$$

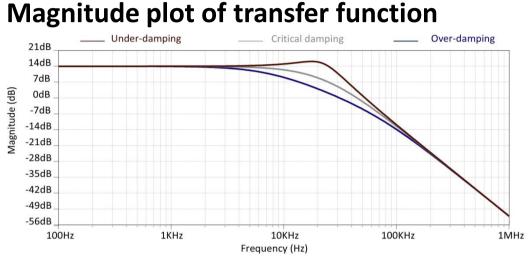
$$\frac{R_5}{R_3R_4R_6C_1C_2} > \left(\frac{1}{2R_2C_1}\right)^2 \rightarrow \text{Instability} \qquad \text{Under-damping: R2 = 10 k}\Omega,$$

$$\frac{R_5}{R_3R_4R_6C_1C_2} = \left(\frac{1}{2R_2C_1}\right)^2 \rightarrow \text{Marginal stability} \qquad \text{Critical damping: R2 = 3.5 k}\Omega,$$

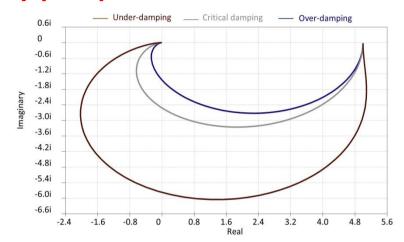
$$\frac{R_5}{R_3R_4R_6C_1C_2} < \left(\frac{1}{2R_2C_1}\right)^2 \rightarrow \text{Stability} \qquad \text{Over-damping: R2 = 10 k}\Omega$$

GBW = 10MHz, DC gain (Ao) = 100000, fo = 25kHz, C1 = 1 nF, C2 = 100 pF, R1= R4 = R5 = $1k\Omega$, R3 = 100 $k\Omega$, R6 = 5 $k\Omega$.

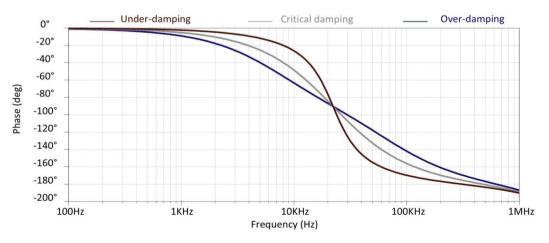
3. Design of High-Order Transfer Functions Simulations of Transfer Function of Tow-Thomas LPF



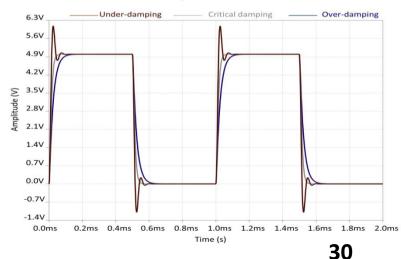
Nyquist plot of transfer function



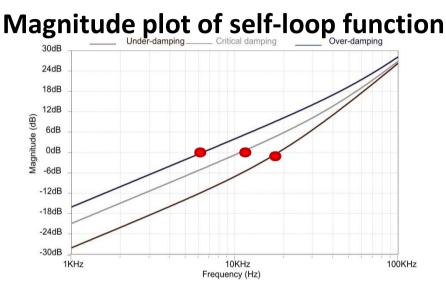
Phase plot of transfer function



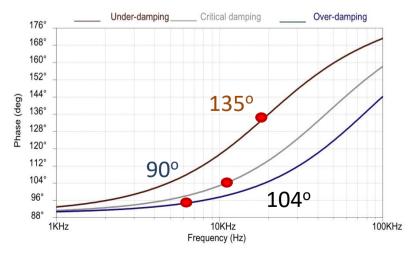
Transient response



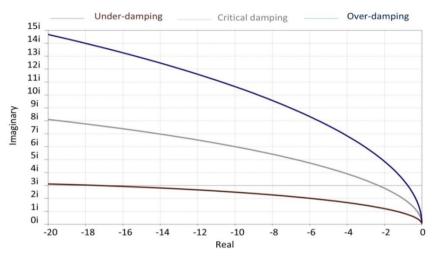
3. Design of High-Order Transfer Functions Simulations of Self-loop Function of Tow-Thomas LPF



Phase plot of self-loop function



Nyquist plot of self-loop function



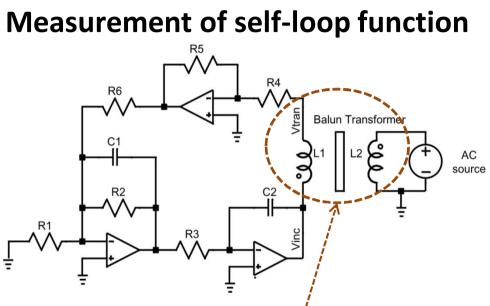
Over-damping:

→Phase margin is 90 degrees.
Critical damping:

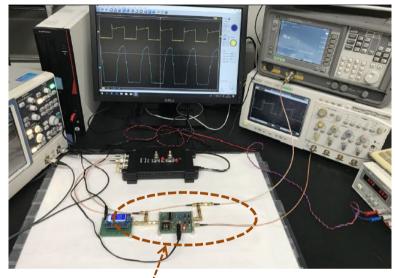
→Phase margin is 76 degrees.
Under-damping:

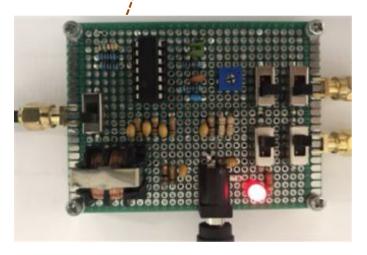
 \rightarrow Phase margin is 45 degrees.

3. Proposed Designs and Experimental Results Implementation of Tow-Thomas Biquad LPF



Balun transformer (10 mH inductance)





3. Proposed Designs and Experimental Results Measurement results of Tow-Thomas Biquad LPF

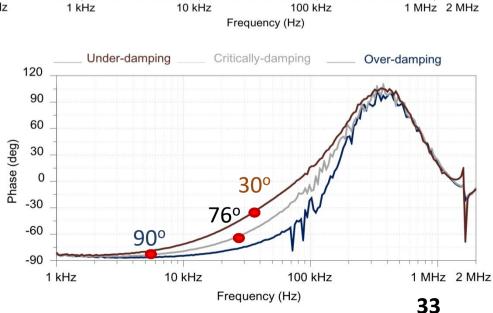
Behaviors of transfer function Under-damping Critically-damping Under-damping 25 20 15 10 5 Magnitude (dB) 0 -5 -10 -15 -20 -25 -30 -35 1 kHz 10 kHz 100 kHz 1 MHz 2 MHz Frequency (Hz)

Over-damping:

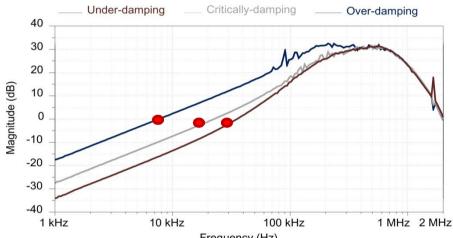
→ Phase margin is 90 degrees. Nearly Critical damping:

→Phase margin is 76 degrees. Under-damping:

 \rightarrow Phase margin is 30 degrees.



Behaviors of self-loop function



4. Conclusions

This work:

- Reviews of complex functions and basic op amp networks
- Proposed methods for measurement of self-loop function in basic op amp networks
- Implementation and stability test for second-order Tow-Thomas biquad filter
- Theoretically, if phase margin is smaller than 76.3degrees, overshoot occurs in second-order systems.

Future of work:

• Stability test for polyphase filters & complex filters

References

[1] H. Kobayashi, N. Kushita, M. Tran, K. Asami, H. San, A. Kuwana, "Analog - Mixed-Signal - RF Circuits for Complex Signal Processing", IEEE 13th International Conference on ASIC (ASICON 2019) Chongqing, China (Nov, 2019).

[2] M. Tran, C. Huynh, "A Design of RF Front-End for ZigBee Receiver using Low-IF architecture with Poly-phase Filter for Image Rejection", M.S. thesis, University of Technology Ho Chi Minh City – Vietnam, Dec. 2014.

[3] B. Razavi (2016) Design of Analog CMOS Integrated Circuits, 2nd Edition McGraw-Hill.

[4] M. Tran, Y. Sun, N. Oiwa, Y. Kobori, A. Kuwana, H. Kobayashi, "Mathematical Analysis and Design of Parallel RLC Network in Step-down Switching Power Conversion System", Proceedings of International Conference on Technology and Social Science ICTSS 2019, Kiryu, Japan (May. 2019).

[5] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "Flat Pass-Band Method with Two RC Band-Stop Filters for 4-Stage Passive RC Quadratic Filter in Low-IF Receiver Systems", IEEE 13th International Conference on ASIC (ASICON 2019) Chongqing, China (Nov. 2019).

[6] M. Tran, Y. Sun, Y. Kobori, A. Kuwana, H. Kobayashi, "Overshoot Cancelation Based on Balanced Charge-Discharge Time Condition for Buck Converter in Mobile Applications", IEEE 13th International Conference on ASIC (ASICON 2019) Chongqing, China (Nov. 2019).

[7] R. Schaumann and M. Valkenberg (2001) Design of Analog Filters, Oxford University Press.

[8] R. Middlebrook, "Measurement of Self-Loop function in Feedback Systems", Int. J. Electronics, Vol 38, No. 4, pp. 485-512, 1975.

[9] A. Sedra, K. Smith (2010) Microelectronic Circuits, 6th ed. Oxford University Press, New York.

[10] M. Tran, "Damped Oscillation Noise Test for Feedback Circuit Based on Comparison Measurement Technique", 73rd System LSI Joint Seminar, Tokyo Institute of Technology, Tokyo, Japan (Oct. 2019).

[11] H. Kobayashi, M. Tran, K. Asami, A. Kuwana, H. San, "Complex Signal Processing in Analog, Mixed - Signal Circuits", Proceedings of International Conference on Technology and Social Science 2019, Kiryu, Japan (May. 2019).

[12] J. Tow, "Active RC Filters-State-Space Realization", IEEE Proceedings, Vol. 56, no. 6, pp. 1137–1139, 1968.

[13] J. Wang, G. Adhikari, N. Tsukiji, M. Hirano, H. Kobayashi, K. Kurihara, A. Nagahama, I. Noda, K. Yoshii, "Equivalence Between Nyquist and Routh-Hurwitz Stability Criteria for Operational Amplifier Design", IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Xiamen, China (Nov. 2017).

6th International Conference on Signal and Image Processing (SIPRO 2020)

July 25-26, 2020, London, United Kingdom

Thank you very much!

